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The Grassmannian Grk ,n

The Grassmannian Grk,n is the set of k-dimensional subspaces V of Rn.

V := 0

(1, 0,−4,−3)

(0, 1, 3, 2)

=

[
1 0 −4 −3
0 1 3 2

]
=

[
1 1 −1 −1
0 1 3 2

] ∈ Gr2,4

∆12(V ) = 1 ∆13(V ) = 3 ∆14(V ) = 2

∆23(V ) = 4 ∆24(V ) = 3 ∆34(V ) = 1

Given V ∈ Grk,n in the form of a k × n matrix, for k-subsets I of
{1, . . . , n} let ∆I (V ) be the k × k minor of V in columns I . The Plücker
coordinates ∆I (V ) are well defined up to a common nonzero scalar.

We call V totally nonnegative if ∆I (V ) ≥ 0 for all k-subsets I . The set
of all such V forms the totally nonnegative Grassmannian Gr≥0k,n.
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The positroid cell decomposition Gr≥0
k ,n

Gr≥0k,n has a cell decomposition due to Rietsch (1999) and Postnikov
(2007). Each cell is specified by requiring some subset of the Plücker
coordinates to be strictly positive, and the rest to equal zero.

Gr≥01,3 = P2
≥0
∼=

∆1,∆2,∆3

> 0

∆1 = 0

∆2,∆3 = 0

∆1,∆3 = 0 ∆1,∆2 = 0

∆3 = 0 ∆2 = 0

Gr≥01,n is an (n − 1)-dimensional simplex in Pn−1. So, one can think of

Gr≥0k,n as a generalization of a simplex into the Grassmannian.

Each cell can be parametrized using a plabic graph, whose dual quiver
conjecturally gives a cluster structure on the associated positroid variety.
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Amplituhedra and Grassmann polytopes

By definition, a polytope is the image of a simplex under an affine map:

simplex in Pn−1 Gr≥0k,n

polytope in Pm Grassmann polytope
in Grk,k+m

linear map
Rn → Rm+1

linear map
Rn → Rk+m

A Grassmann polytope is the image of a map Gr≥0k,n → Grk,k+m induced by

a linear map Z : Rn → Rk+m. (Here m ≥ 0 with k +m ≤ n.)
When the matrix Z has positive maximal minors, the Grassmann

polytope is called an amplituhedron, denoted An,k,m(Z ). Amplituhedra
generalize cyclic polytopes (k = 1) and totally nonnegative Grassmannians
(k +m = n). They were introduced by Arkani-Hamed and Trnka (2014),
and inspired Lam (2015) to define Grassmann polytopes.
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Positive geometries and canonical forms

Arkani-Hamed, Bai, Lam (2017): a positive geometry is a space equipped
with a canonical differential form, which has logarithmic singularities at
the boundaries of the space. Examples include convex polytopes:

x

y

(0, 0) (1, 0)

(0, 1) ± dxdy

xy(1−x−y)

The amplituhedron An,k,m(Z ) is conjecturally a positive geometry,
whose canonical form for m = 4 is the tree-level scattering amplitude in
planar N = 4 supersymmetric Yang–Mills theory.

Other positive geometries with physically relevant canonical forms
include associahedra, Cayley polytopes, and cosmological polytopes.

Arkani-Hamed, Bai, He, Yan and Bazier-Matte, Douville, Mousavand,
Thomas, Yıldırım (2018): new construction of generalized associahedra
and Newton polytopes of F -polynomials in finite simply-laced types.
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Canonical form of a cluster variety

Gr≥0k,n is a positive geometry. The canonical form of Gr≥02,4 is (up to sign)

d∆23

∆23

d∆34

∆34

d∆14

∆14

d∆13

∆13
, where {∆12 = 1,∆23,∆34,∆14,∆13} is a cluster.

The form does not depend (up to sign) on the choice of cluster.

xx ′ = P + Q

xdx ′ + x ′dx = dP + dQ

dx ′

x ′
= −dx

x
+

dP

xx ′
+

dQ

xx ′
(dy ∧ dy = 0)

Conjecture (Arkani-Hamed, Bai, Lam (2017))

Let X = Spec(A) be the cluster variety of a ‘reasonable’ cluster algebra A.
Then we can compactify X so that its nonnegative part is a positive

geometry with canonical form ±
n∧

i=1

dxi
xi

for any cluster {x1, . . . , xn} of A.
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Triangulations

One way to find the canonical form of a positive geometry is by
triangulating it into simpler pieces:

x

y

(0, 0) (1, 0)

(0, 1) (2, 1)

(1+y)dxdy

xy(1−y)(1−x+y)
=

dxdy

xy(1−x−y)

dxdy

(1−x)(1−y)(x+y−1)

dxdy

(x−1)(1−y)(1−x+y)

+

+

Conjecture (Arkani-Hamed, Trnka (2014))

The m = 4 amplituhedron An,k,4(Z ) is triangulated by the images of

certain 4k-dimensional cells of Gr≥0k,n, coming from the BCFW recursion.

Problem

Find a ‘triangulation-independent’ description of the amplituhedron form.
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Triangulating amplituhedra: progress so far

Sturmfels (1988): When k = 1, any amplituhedron An,1,m(Z ) is a cyclic
polytope with n vertices in Pm, i.e. it is combinatorially equivalent to a
polytope whose vertices lie on the rational normal curve (1 : t : · · · : tm).
Triangulations of cyclic polytopes are already interesting!

Karp, Williams (2018): When m = 1, any amplituhedron An,k,1(Z ) is
isomorphic to the complex of bounded faces of a cyclic hyperplane
arrangement of n hyperplanes in Rk .

A6,3,1(Z )

Karp, Williams, Zhang (2018): the pieces of the conjectured
triangulation of An,k,4(Z ) are disjoint when k = 2.

The proofs of these results involve a careful study of sign vectors.
We know that An,k,m(Z ) is homeomorphic to a closed ball when k = 1,

m = 1, or n − k −m = 1, and in certain special cases. In general, it is not
even known whether An,k,m(Z ) is contractible.
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Combinatorics of triangulations

Conjecture (Arkani-Hamed, Trnka (2014))

The m = 4 amplituhedron An,k,4(Z ) is triangulated by the images of

certain 4k-dimensional cells of Gr≥0k,n, coming from the BCFW recursion.

The number of top-dimensional cells in a BCFW triangulation is the
Narayana number Nn−3,k+1 = 1

n−3
(n−3
k+1

)(n−3
k

)
.

e.g. For n = 7, k = 2, we have N7−3,2+1 = 6:

k = 1, m even: every triangulation of An,1,m(Z ) has
(n−1−m

2
m
2

)
top cells.

m = 2: there is a nice triangulation of An,k,2(Z ) with
(n−2

k

)
top cells.
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Combinatorics of triangulations: plane partitions?

Define the MacMahon number

M(a, b, c) :=
a∏

p=1

b∏
q=1

c∏
r=1

p + q + r − 1

p + q + r − 2
.

Conjecture (Karp, Williams, Zhang (2018))

For m even, there exists a cell decomposition of An,k,m(Z ) with
M(k , n−k−m, m2 ) top-dimensional cells.

M(a, b, c) is the number of plane partitions inside an a× b × c box.
e.g. M(2, 4, 3) = 490:

↔ ↔
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Combinatorics of triangulations: plane partitions?

Define the MacMahon number

M(a, b, c) :=
a∏

p=1

b∏
q=1

c∏
r=1

p + q + r − 1

p + q + r − 2
.

Conjecture (Karp, Williams, Zhang (2018))

For m even, there exists a cell decomposition of An,k,m(Z ) with
M(k , n−k−m, m2 ) top-dimensional cells.

Problem

Interpret properties of plane partitions in terms of amplituhedra.

The k ↔ n−k−m symmetry comes (for m = 4) from parity of the
scattering amplitude. Galashin and Lam (2018) showed that the stacked
twist map interchanges triangulations of An,k,m(Z ) and An,n−k−m,m(Z ′).

Problem

Explain the conjectural symmetry for amplituhedra between k and m
2 .
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