Wronskians, total positivity, and real Schubert calculus

Slides available at www-personal.umich.edu/~snkarp

Steven N. Karp (LaCIM, Université du Québec à Montréal) arXiv:2110.02301

> December 3rd, 2021 CMS Winter Meeting

The Grassmannian and total positivity

• The Grassmannian $\operatorname{Gr}_{k,n}(\mathbb{R})$ is the set of k-dimensional subspaces of \mathbb{R}^n .

 $\Delta_{12}=1, \ \Delta_{13}=3, \ \Delta_{14}=2, \ \Delta_{23}=4, \ \Delta_{24}=3, \ \Delta_{34}=1$

Given V ∈ Gr_{k,n}(ℝ) in the form of a k × n matrix, for k-subsets I of {1,..., n} let Δ_I(V) be the k × k minor of V in columns I. The Plücker coordinates Δ_I(V) are well defined up to a common nonzero scalar.
We call V ∈ Gr_{k,n}(ℝ) totally nonnegative if Δ_I(V) ≥ 0 for all k-subsets I, and totally positive if Δ_I(V) > 0 for all k-subsets I.

Complete flag variety

• The complete flag variety $Fl_n(\mathbb{R})$ consists of tuples of subspaces (V_1, \ldots, V_{n-1}) of \mathbb{R}^n , where

 $V_1 \subset \cdots \subset V_{n-1}$ and $\dim(V_k) = k$ for all $1 \le k \le n-1$.

We say that (V_1, \ldots, V_{n-1}) is *totally nonnegative* if all its Plücker coordinates are nonnegative, i.e., V_k is totally nonnegative in $Gr_{k,n}(\mathbb{R})$ for all $1 \le k \le n-1$. Similarly, we say that (V_1, \ldots, V_{n-1}) is *totally positive* if all its Plücker coordinates are positive.

• e.g. Let n:= 3, and let $(V_1,V_2)\in\mathsf{Fl}_3(\mathbb{R})$ be given by the matrix

$$\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}, \quad \text{with} \quad \begin{array}{l} \Delta_1 = 1, \ \Delta_2 = a, \ \Delta_3 = b, \\ \Delta_{12} = 1, \ \Delta_{13} = c, \ \Delta_{23} = ac - b. \end{array}$$

Then (V_1, V_2) is totally positive if and only if

$$a, b, c, ac - b > 0.$$

The Wronskian

• The Wronskian of k linearly independent functions $f_1, \ldots, f_k : \mathbb{R} \to \mathbb{R}$ is

$$\mathsf{Wr}(f_1,\ldots,f_k) := \mathsf{det} \begin{bmatrix} f_1 & \cdots & f_k \\ f'_1 & \cdots & f'_k \\ \vdots & \ddots & \vdots \\ f_1^{(k-1)} & \cdots & f_k^{(k-1)} \end{bmatrix}$$

• e.g.
$$Wr(f,g) = det \begin{bmatrix} f & g \\ f' & g' \end{bmatrix} = fg' - f'g = f^2(\frac{g}{f})'.$$

Let V := span(f₁,..., f_k). Then Wr(V) is well-defined up to a scalar. Its zeros are points in ℝ where some nonzero f ∈ V has a zero of order k.
We identify ℝⁿ with the space of polynomials of degree at most n − 1:

$$\mathbb{R}^n \leftrightarrow \mathbb{R}[x]_{\leq n-1}, \quad (a_1, \ldots, a_n) \leftrightarrow a_1 + a_2 x + \cdots + a_n x^{n-1}$$

We obtain the Wronski map $Wr : Gr_{k,n}(\mathbb{R}) \to \mathbb{P}(\mathbb{R}[x]_{\leq k(n-k)}).$

• e.g. Let
$$V := \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \end{bmatrix} \in \operatorname{Gr}_{2,4}(\mathbb{R})$$
. Then
 $\operatorname{Wr}(V) = \operatorname{Wr}(1 - 4x^2 - 3x^3, x + 3x^2 + 2x^3) = 1 + 6x + 10x^2 + 6x^3 + x^4.$

Theorem (Karp (2021))

(i) The complete flag (V_1, \ldots, V_{n-1}) is totally nonnegative if and only if $Wr(V_k)$ is nonzero on the interval $(0, \infty)$, for all $1 \le k \le n-1$. (ii) The complete flag (V_1, \ldots, V_{n-1}) totally positive if and only if $Wr(V_k)$ is nonzero on the interval $[0, \infty]$, for all $1 \le k \le n-1$.

• e.g. Let n := 3, and let $(V_1, V_2) \in \mathsf{Fl}_3(\mathbb{R})$ be given by the matrix

 $\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}, \quad \text{with} \quad \begin{array}{l} \mathsf{Wr}(V_1) = 1 + ax + bx^2, \\ \mathsf{Wr}(V_2) = 1 + 2cx + (ac - b)x^2. \end{array}$

Part (ii) says that a, b, c, ac - b > 0 if and only if $Wr(V_1)$ and $Wr(V_2)$ are positive on $[0, \infty]$. The forward direction is immediate, and the reverse direction follows by calculation (but the general proof is topological).

• The theorem also gives new total nonnegativity and total positivity tests for $Fl_n(\mathbb{R})$ using the coefficients of the Wronskians.

Shapiro–Shapiro conjecture (1995)

• Schubert (1886): Let $W_1, \ldots, W_{k(n-k)} \in \operatorname{Gr}_{k,n}(\mathbb{C})$ be generic. Then there are $\frac{1!2!\cdots(k-1)!(k(n-k))!}{(n-k)!(n-k+1)!\cdots(n-1)!}$ elements $U \in \operatorname{Gr}_{n-k,n}(\mathbb{C})$ such that $U \cap W_i \neq \{0\}$ for all $1 \leq i \leq k(n-k)$.

• B. and M. Shapiro conjectured that if each W_i is an osculating plane to the rational normal curve $\gamma(x) := (1, x, \dots, x^{n-1})$, then every U is real.

F. Sottile, "Frontiers of reality in Schubert calculus"

• García-Puente, Hein, Hillar, Martín del Campo, Ruffo, Sottile, and Teitler (2012) made the more general *secant conjecture*: one can take each W_i to be spanned by k points of the form $\gamma(x)$, such that the values $x \in \mathbb{R}$ chosen for each W_i lie in k(n - k) disjoint intervals.

Steven N. Karp (LaCIM)

Wronskians, total positivity, and real Schubert calculus

6 / 8

Secant conjecture and Eremenko's conjecture

• The Shapiro-Shapiro conjecture can be reformulated as follows:

Theorem (Mukhin, Tarasov, Varchenko (2009))

Let $V \in Gr_{k,n}(\mathbb{C})$. If all complex zeros of Wr(V) are real, then V is real.

ullet e.g. Let $\operatorname{Wr}(V):=(x+a)^2(x+b)^2.$ The two solutions $V\in\operatorname{Gr}_{2,4}(\mathbb{C})$ are

 $\langle (x+a)(x+b), x(x+a)(x+b) \rangle$ and $\langle (x+a)^3, (x+b)^3 \rangle$.

• The secant conjecture is still open. Eremenko (2015) showed that it is implied by the following conjecture:

Conjecture (Eremenko (2015))

Let $V \in Gr_{k,n}(\mathbb{R})$. If all complex zeros of Wr(V) are real, then every nonzero $f \in V$ has at most k - 1 zeros in any interval of \mathbb{R} on which Wr(V) is nonzero.

• The case k = 2 of both conjectures was proved by Eremenko, Gabrielov, Shapiro, and Vainshtein (2006).

7 / 8

Total positivity conjecture

Conjecture (Mukhin, Tarasov (2017); Karp (2021))

Let $V \in Gr_{k,n}(\mathbb{R})$. (i) If all zeros of Wr(V) lie in $[-\infty, 0]$, then V is totally nonnegative. (ii) If all zeros of Wr(V) lie in $(-\infty, 0)$, then V is totally positive.

• e.g. Let $Wr(V) := (x + a)^2(x + b)^2$. If a, b > 0, then the two solutions

$$\begin{bmatrix} ab & a+b & 1 & 0 \\ 0 & ab & a+b & 1 \end{bmatrix} \text{ and } \begin{bmatrix} a^3 & 3a^2 & 3a & 1 \\ b^3 & 3b^2 & 3b & 1 \end{bmatrix} \text{ are totally positive.}$$

Theorem (Karp (2021))

The conjecture above is equivalent to Eremenko's conjecture. It implies a totally positive generalization of the secant conjecture.

• The proof uses the characterization of the totally positive part of $Fl_n(\mathbb{R})$ presented earlier, along with classical results about Chebyshev systems and disconjugate linear differential equations.

8 / 8