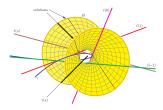
Total positivity in Schubert calculus

Slides available at snkarp.github.io



F. Sottile, "Frontiers of reality in Schubert calculus"

M. Griffon, CC BY 3.0 Deed

Steven N. Karp (University of Notre Dame)

arXiv:2309.04645 (joint with Kevin Purbhoo)

arXiv:2405.20229 (joint with Evgeny Mukhin and Vitaly Tarasov)

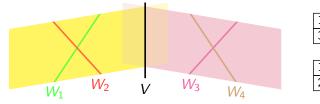
CanaDAM 2025 University of Ottawa

Schubert calculus (1886)

• Divisor Schubert problem: given subspaces $W_1, \ldots, W_{d(m-d)} \subseteq \mathbb{C}^m$ of dimension m-d, find all

d-subspaces $V \subseteq \mathbb{C}^m$ such that $V \cap W_i \neq \{0\}$ for all *i*.

• e.g. d=2, m=4 (projectivized). Given 4 lines $W_i\subseteq\mathbb{CP}^3$, find all lines $V\subseteq\mathbb{CP}^3$ intersecting all 4. Generically, there are 2 solutions.



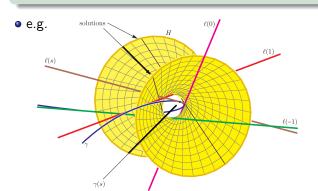
We can see the 2 solutions explicitly when two pairs of the lines intersect.

- If the W_i 's are generic, the number of solutions V is f^{\square} , the number of standard Young tableaux of rectangular shape $d \times (m-d)$.
- Fulton (1984): "The question of how many solutions of real equations can be real is still very much open, particularly for enumerative problems."

Shapiro-Shapiro conjecture

Shapiro-Shapiro conjecture (1993)

Let $W_1, \ldots, W_{d(m-d)} \subseteq \mathbb{R}^m$ be (m-d)-subspaces osculating the moment curve $\gamma(t) := (\frac{t^{m-1}}{(m-1)!}, \frac{t^{m-2}}{(m-2)!}, \ldots, t, 1)$ at real points. Then there exist f^{\square} d-subspaces $V \subseteq \mathbb{R}^m$ such that $V \cap W_i \neq \{0\}$ for all i.



 ${\sf F.\ Sottile,\ ``Frontiers\ of\ reality\ in\ Schubert\ calculus''}$

• This Schubert problem arises in the study of linear series in algebraic geometry, ordinary differential equations, and pole-placement problems in control theory.

Shapiro-Shapiro conjecture and secant conjecture

- Sottile (1999) tested the conjecture and proved it asymptotically.
- Eremenko-Gabrielov (2002): cases $d \le 2$, $m d \le 2$.
- Mukhin-Tarasov-Varchenko (2009): full conjecture via the Bethe ansatz.
- Levinson-Purbhoo (2021): topological proof of the full conjecture.

Secant conjecture, divisor form (Sottile (2003))

Let $W_1, \ldots, W_{d(m-d)} \subseteq \mathbb{R}^m$ be (m-d)-subspaces secant to the moment curve γ along non-overlapping intervals. Then there exist f^{\square} real d-subspaces $V \subseteq \mathbb{R}^m$ such that $V \cap W_i \neq \{0\}$ for all i.

• Eremenko–Gabrielov–Shapiro–Vainshtein (2006): case $m-d \le 2$.

Theorem (Karp-Purbhoo (2023))

The divisor form of the secant conjecture is true.

Positive Shapiro-Shapiro conjecture

• The (projective) Plücker coordinates of a d-subspace $V \subseteq \mathbb{C}^m$ are the $d \times d$ minors $\Delta_J(V)$ of a $d \times m$ matrix whose rows form a basis of V.

• e.g.
$$V = \mathsf{rowspan} \begin{pmatrix} \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \end{bmatrix} \end{pmatrix} \rightsquigarrow \begin{array}{c} \Delta_{1,2}(V) = 1 & \Delta_{2,3}(V) = 4 \\ \Delta_{1,3}(V) = 3 & \Delta_{2,4}(V) = 3 \\ \Delta_{1,4}(V) = 2 & \Delta_{3,4}(V) = 1 \end{array}$$

Positivity conjecture (Mukhin-Tarasov (2017); Karp (2021))

Let $W_1,\ldots,W_{d(m-d)}\subseteq\mathbb{R}^m$ be (m-d)-subspaces osculating the moment curve $\gamma(t)$ at real points $t_1,\ldots,t_{d(m-d)}>0$. Then there exist f^\square d-subspaces $V\subseteq\mathbb{R}^m$ with all $\Delta_J(V)>0$ such that $V\cap W_i\neq\{0\}$ for all i.

- Karp (2023): the positivity conjecture is equivalent to a conjecture of Eremenko (2015), which implies the divisor form of the secant conjecture.
- Karp–Purbhoo (2023): the positivity conjecture is true. To prove it, we explicitly solve for all $\Delta_J(V)$ over $\mathbb{C}[\mathfrak{S}_{d(m-d)}]$.

Universal Plücker coordinates

• Shapiro–Shapiro problem: given (m-d)-subspaces $W_1,\ldots,W_{d(m-d)}\subseteq\mathbb{C}^m$ osculating $\gamma(t)$ at points $t_1,\ldots,t_{d(m-d)}\in\mathbb{C}$, find all

d-subspaces $V\subseteq\mathbb{C}^m$ such that $V\cap W_i\neq\{0\}$ for all i.

Theorem (Karp-Purbhoo (2023))

There exist commuting linear operators $\beta_J = \beta_J(t_1, \dots, t_{d(m-d)})$ indexed by d-subsets $J \subseteq \{1, \dots, m\}$, satisfying:

- (i) There is a bijection between the eigenspaces of the β_J 's and the solutions V above, sending the eigenvalue of β_J to the $\Delta_J(V)$.
- (ii) If $t_1, \ldots, t_{d(m-d)} > 0$, then the β_J 's are positive definite.

$$\beta_J := \sum_{\substack{X \subseteq \{1, \dots, d(m-d)\}, \\ |X| = |\lambda(J)|}} \left(\prod_{i \notin X} t_i\right) \sum_{\pi \in \mathfrak{S}_X} \chi^{\lambda(J)}(\pi) \pi \in \mathbb{C}[\mathfrak{S}_{d(m-d)}].$$

• We show the β_J 's satisfy the *Plücker relations* using the *KP hierarchy*.

New proof: higher Gaudin Hamiltonians

ullet The higher Gaudin Hamiltonian associated to the partition λ is

$$\mathcal{T}_{\lambda} := (t_1 + \mathbf{d}_1) \cdots (t_n + \mathbf{d}_n) s_{\lambda}(h) \in \operatorname{End}((\mathbb{C}^d)^{\otimes n}),$$

where:

- h is a $d \times d$ matrix;
- $s_{\lambda}(h)$ is the Schur polynomial evaluated at the eigenvalues of h; and
- \mathbf{d}_i is the derivative with respect to h^T acting in the *i*th tensor factor.

Theorem (Alexandrov–Leurent–Tsuboi–Zabrodin (2014))

The T_{λ} 's pairwise commute and satisfy the Plücker relations.

Theorem (Karp–Mukhin–Tarasov (2024))

- (i) We have $\beta_J = T_{\lambda(J)}|_{h=0}$ when n = d(m-d).
- (ii) If $t_1, \ldots, t_n > 0$ and h is positive definite, then so is T_{λ} .

Future directions

- Further explore the connection to the KP hierarchy.
- What happens to the higher Gaudin Hamiltonian T_{λ} if s_{λ} is replaced by a different symmetric function?
- Address generalizations and variations of the Shapiro–Shapiro conjecture: the discriminant conjecture, the general form of the secant conjecture, the monotone conjecture, the total reality conjecture for convex curves, . . .

Thank you!