Sign variation, the Grassmannian, and total positivity

arXiv:1503.05622 Slides available at math.berkeley.edu/~skarp

Steven N. Karp, UC Berkeley

FPSAC 2015 KAIST, Daejeon

1/9

The Grassmannian Gr_{k,n}

• The Grassmannian $Gr_{k,n}$ is the set of k-dimensional subspaces V of \mathbb{R}^n .

$$V := \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in \mathsf{Gr}_{2,4}$$
$$= \begin{bmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & 3 & 2 \end{bmatrix}$$

$$\Delta_{\{1,2\}} = 1, \Delta_{\{1,3\}} = 3, \Delta_{\{1,4\}} = 2, \Delta_{\{2,3\}} = 4, \Delta_{\{2,4\}} = 3, \Delta_{\{3,4\}} = 1$$

Given V ∈ Gr_{k,n} in the form of a k × n matrix, for I ∈ (^[n]_k) let Δ_I(V) be the k × k minor of V with columns I. The Plücker coordinates Δ_I(V) are well-defined up to multiplication by a global nonzero constant.
We say that V ∈ Gr_{k,n} is totally nonnegative if Δ_I(V) ≥ 0 for all I ∈ (^[n]_k). Denote the set of such V by Gr^{≥0}_{k,n}, called the totally nonnegative Grassmannian.

Sign variation

• For $x \in \mathbb{R}^n$, let var(x) be the number of sign changes in the sequence x_1, x_2, \dots, x_n , ignoring any zeros. (We define var(0) := -1.)

$$var((1, -4, 0, -3, 6, 0, -1)) = var((1, -4, -3, 6, -1)) = 3$$

Theorem (Gantmakher, Krein (1950); Schoenberg, Whitney (1951)) Let $V \in Gr_{k,n}$. Then V is totally nonnegative iff $var(x) \le k - 1$ for all $x \in V$.

• e.g.
$$V :=$$
 $(0, 1, 3, 2)$ $(1, 0, -4, -3) \in \operatorname{Gr}_{2,4}^{\geq 0}$.

• Note that every $V \in Gr_{k,n}$ contains a vector x with $var(x) \ge k - 1$. So, the totally nonnegative subspaces are those whose vectors change sign as few times as possible.

Steven N. Karp (UC Berkeley)

A history of total positivity

• Pólya (1912) asked which linear $A : \mathbb{R}^k \to \mathbb{R}^n$ satisfy $var(A(x)) \le var(x)$ for all $x \in \mathbb{R}^k$. Schoenberg (1930) showed that for injective A, this holds iff for $j = 1, \dots, k$, all nonzero $j \times j$ minors of A have the same sign. formations. The problem of characterizing such transformations was attacked by Schoenberg in 1930 with only partial success

Gantmakher, Krein (1935): The eigenvalues of a *totally positive* square matrix (all whose minors are positive) are real, positive, and distinct.
Gantmakher, Krein (1950): Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, 359pp.

- Whitney (1952): The $n \times n$ totally positive matrices are dense in the $n \times n$ totally nonnegative matrices.
- Aissen, Schoenberg, Whitney (1952): Let $r_1, \dots, r_n \in \mathbb{C}$. Then r_1, \dots, r_n are all nonnegative reals iff $s_{\lambda}(r_1, \dots, r_n) \geq 0$ for all partitions λ .
- Karlin (1968): Total Positivity, Volume I, 576pp.
- Lusztig (1994) developed a theory of total positivity for G and G/P.
- Fomin and Zelevinsky (2000s) defined cluster algebras.
- Postnikov (2006) studied $Gr_{k,n}^{\geq 0}$ from a combinatorial perspective.

How close is a subspace to being totally nonnegative?

• Can we determine $\max_{x \in V} var(x)$ from the Plücker coordinates of V?

Theorem (Karp (2015))

Let $V \in \operatorname{Gr}_{k,n}$ and $m \geq k-1$. (i) If $var(x) \leq m$ for all $x \in V$, then $\operatorname{var}((\Delta_{J\cup\{i\}}(V))_{i\notin J}) \leq m-k+1$ for all $J \in {[n] \choose k-1}$. The converse holds if V is generic (i.e. $\Delta_I(V) \neq 0$ for all I). (ii) We can perturb V into a generic W with $\max_{x \in V} var(x) = \max_{x \in W} var(x)$. • e.g. Let $V := \begin{bmatrix} 1 & 0 & -2 & 4 \\ 0 & 2 & 1 & 1 \end{bmatrix} \in Gr_{2,4}$ and m := 2. The fact that $var(x) \leq 2$ for all $x \in V$ is equivalent to the fact that the 4 sequences $(\Delta_{\{1,2\}}, \Delta_{\{1,3\}}, \Delta_{\{1,4\}}) = (2,1,1), \quad (\Delta_{\{1,3\}}, \Delta_{\{2,3\}}, \Delta_{\{3,4\}}) = (1,4,-6),$ $(\Delta_{\{1,2\}}, \Delta_{\{2,3\}}, \Delta_{\{2,4\}}) = (2, 4, -8), \quad (\Delta_{\{1,4\}}, \Delta_{\{2,4\}}, \Delta_{\{3,4\}}) = (1, -8, -6)$ each change sign at most once.

How close is a subspace to being totally nonnegative?

• Can we determine $\max_{x \in V} var(x)$ from the Plücker coordinates of V?

Theorem (Karp (2015))

Let $V \in \operatorname{Gr}_{k,n}$ and $m \geq k - 1$. (i) If $var(x) \leq m$ for all $x \in V$, then $\operatorname{var}((\Delta_{J\cup\{i\}}(V))_{i\notin J}) \leq m-k+1$ for all $J \in \binom{[n]}{l-1}$. The converse holds if V is generic (i.e. $\Delta_I(V) \neq 0$ for all I). (ii) We can perturb V into a generic W with $\max_{x \in V} var(x) = \max_{x \in W} var(x)$. • e.g. Consider $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0.1 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 1 & 0.01 \\ 0 & 1 & 0.1 & 1.001 \end{bmatrix}$. The 4 sequences of Plücker coordinates are $(\Delta_{\{1,2\}}, \Delta_{\{1,3\}}, \Delta_{\{1,4\}}) = (1, \emptyset, \lambda), \quad (\Delta_{\{1,3\}}, \Delta_{\{2,3\}}, \Delta_{\{3,4\}}) = (\emptyset, -1, 1),$ $(\Delta_{\{1,2\}}, \Delta_{\{2,3\}}, \Delta_{\{2,4\}}) = (1, -1, \overset{-0.01}{\varnothing}), \quad (\Delta_{\{1,4\}}, \Delta_{\{2,4\}}, \Delta_{\{3,4\}}) \stackrel{1.001}{=} (\overset{-0.01}{(\chi, \emptyset, 1)}).$

The totally positive Grassmannian

We say that V ∈ Gr_{k,n} is *totally positive* if Δ_I(V) > 0 for all I ∈ (^[n]_k).
For x ∈ ℝⁿ, let var(x) be the maximum of var(y) over all y ∈ ℝⁿ obtained from x by changing zero components of x.

$$\overline{var}((1, -4, 0, -3, 6, 0, -1)) = 5$$

Theorem (Gantmakher, Krein (1950))

 $V \in \operatorname{Gr}_{k,n}$ is totally positive iff $\overline{\operatorname{var}}(x) \leq k-1$ for all nonzero $x \in V$.

Theorem (Karp (2015))

Let $V \in Gr_{k,n}$ and $m \ge k - 1$. Then $\overline{var}(x) \le m$ for all nonzero $x \in V$ iff $\overline{var}((\Delta_{J \cup \{i\}}(V))_{i \notin J}) \le m - k + 1$ for all $J \in {\binom{[n]}{k}}$ such that $\Delta_{J \cup \{i\}}(V) \ne 0$ for some *i*.

• Note that var is *increasing* while \overline{var} is *decreasing* with respect to genericity.

Steven N. Karp (UC Berkeley)

Sign variation, the Grassmannian, and total positivity

Oriented matroids

• An *oriented matroid* is a combinatorial abstraction of a real subspace, which records the Plücker coordinates up to sign, or equivalently the vectors up to sign.

• These results generalize to oriented matroids.

7/9

The cell decomposition of $Gr_{k,n}^{\geq 0}$

• Given $V \in Gr_{k,n}$, let $M(V) := \{I \in {[n] \choose k} : \Delta_I(V) \neq 0\}$, called the *matroid* of V. The *matroid stratification* of $Gr_{k,n}^{\geq 0}$ is a CW-decomposition.

$$\mathsf{Gr}_{1,3}^{\geq 0} \cong \begin{array}{c} \{1\}, \{2\} \\ \{2\}, \{3\} \\ \{2\}, \{3\} \\ \{3\} \end{array}$$

• How can we find the cell of V (i.e. M(V)) in $\operatorname{Gr}_{k,n}^{\geq 0}$ using sign patterns?

Exercise

Let $V \in Gr_{k,n}$ and $I \in {[n] \choose k}$. Then $\Delta_I(V) \neq 0$ iff V realizes all 2^k sign patterns in $\{+, -\}^k$ on I.

• Moreover, given $\omega \in \{+, -\}^k$, there exists $V \in Gr_{k,n}$ which realizes all 2^k sign patterns in $\{+, -\}^k$ on I except for $\pm \omega$ (assuming n > k).

Steven N. Karp (UC Berkeley)

The cell decomposition of $Gr_{k,n}^{\geq 0}$

• Given $V \in Gr_{k,n}$, let $M(V) := \{I \in {[n] \choose k} : \Delta_I(V) \neq 0\}$, called the *matroid* of V. The *matroid stratification* of $Gr_{k,n}^{\geq 0}$ is a CW-decomposition.

$$\mathsf{Gr}_{1,3}^{\geq 0} \cong \begin{array}{c} \{1\}, \{2\} \\ \{2\}, \{3\} \\ \{2\}, \{3\} \\ \{3\} \end{array}$$

• How can we find the cell of V (i.e. M(V)) in $\operatorname{Gr}_{k,n}^{\geq 0}$ using sign patterns?

Theorem (Karp (2015))

Let $V \in Gr_{k,n}^{\geq 0}$ and $I \in {[n] \choose k}$. Then $\Delta_I(V) \neq 0$ iff V realizes the following k sign patterns on I: $(+, -, +, -, +, -, \cdots), (+, +, -, +, -, +, \cdots), (+, -, -, +, -, +, \cdots), \cdots$.

• Compare this to the fact that the matroid stratification of $\operatorname{Gr}_{k,n}^{\geq 0}$ is the refinement of *n* cyclically shifted *Schubert stratifications* (vs. all *n*!).

Steven N. Karp (UC Berkeley)

Sign variation, the Grassmannian, and total positivity

Further directions

• Is there an efficient way to test whether a given $V \in Gr_{k,n}$ is totally positive using the data of sign patterns? (For Plücker coordinates, in order to test whether V is totally positive, we only need to check that some particular k(n-k) Plücker coordinates are positive, not all $\binom{n}{k}$.) • Is there a simple way to index the cell decomposition of $Gr_{k,n}^{\geq 0}$ using the data of sign patterns?

• Is there a nice stratification of the subset of the Grassmannian

 $\{V \in \operatorname{Gr}_{k,n} : \operatorname{var}(x) \leq m \text{ for all } x \in V\},\$

for fixed m? (If m = k - 1, this is $Gr_{k,n}^{\geq 0}$.)

Thank you!