Sign variation, the Grassmannian, and total positivity

$$
\text { arXiv: } 1503.05622
$$

Slides available at math.berkeley.edu/~skarp

Steven N. Karp, UC Berkeley

FPSAC 2015
KAIST, Daejeon

The Grassmannian $\mathrm{Gr}_{k, n}$

- The Grassmannian $\mathrm{Gr}_{k, n}$ is the set of k-dimensional subspaces V of \mathbb{R}^{n}.

$$
\Delta_{\{1,2\}}=1, \Delta_{\{1,3\}}=3, \Delta_{\{1,4\}}=2, \Delta_{\{2,3\}}=4, \Delta_{\{2,4\}}=3, \Delta_{\{3,4\}}=1
$$

- Given $V \in \mathrm{Gr}_{k, n}$ in the form of a $k \times n$ matrix, for $I \in\binom{[n]}{k}$ let $\Delta_{I}(V)$ be the $k \times k$ minor of V with columns I. The Plücker coordinates $\Delta_{I}(V)$ are well-defined up to multiplication by a global nonzero constant.
- We say that $V \in \mathrm{Gr}_{k, n}$ is totally nonnegative if $\Delta_{l}(V) \geq 0$ for all $I \in\binom{[n]}{k}$. Denote the set of such V by $\mathrm{Gr}_{k, n}^{\geq 0}$, called the totally nonnegative Grassmannian.

Sign variation

- For $x \in \mathbb{R}^{n}$, let $\operatorname{var}(x)$ be the number of sign changes in the sequence $x_{1}, x_{2}, \cdots, x_{n}$, ignoring any zeros. (We define $\operatorname{var}(0):=-1$.)

$$
\operatorname{var}((1,-4,0,-3,6,0,-1))=\operatorname{var}((\overparen{1,-4},-3,6,-1))=3
$$

Theorem (Gantmakher, Krein (1950); Schoenberg, Whitney (1951))

Let $V \in \mathrm{Gr}_{k, n}$. Then V is totally nonnegative iff $\operatorname{var}(x) \leq k-1$ for all $x \in V$.

- e.g. $V:=\mathrm{Gr}_{2,4}^{\geq 0}$.
- Note that every $V \in \mathrm{Gr}_{k, n}$ contains a vector x with $\operatorname{var}(x) \geq k-1$. So, the totally nonnegative subspaces are those whose vectors change sign as few times as possible.

A history of total positivity

- Pólya (1912) asked which linear $A: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ satisfy $\operatorname{var}(A(x)) \leq \operatorname{var}(x)$ for all $x \in \mathbb{R}^{k}$. Schoenberg (1930) showed that for injective A, this holds iff for $j=1, \cdots, k$, all nonzero $j \times j$ minors of A have the same sign.
formations. The problem of characterizing such transformations
was attacked by Schoenberg in 1930 with only partial success
- Gantmakher, Krein (1935): The eigenvalues of a totally positive square matrix (all whose minors are positive) are real, positive, and distinct.
- Gantmakher, Krein (1950): Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, 359pp.
- Whitney (1952): The $n \times n$ totally positive matrices are dense in the $n \times n$ totally nonnegative matrices.
- Aissen, Schoenberg, Whitney (1952): Let $r_{1}, \cdots, r_{n} \in \mathbb{C}$. Then r_{1}, \cdots, r_{n} are all nonnegative reals iff $s_{\lambda}\left(r_{1}, \cdots, r_{n}\right) \geq 0$ for all partitions λ.
- Karlin (1968): Total Positivity, Volume I, 576pp.
- Lusztig (1994) developed a theory of total positivity for G and G / P.
- Fomin and Zelevinsky (2000s) defined cluster algebras.
- Postnikov (2006) studied $\mathrm{Gr}_{k, n}^{\geq 0}$ from a combinatorial perspective.

How close is a subspace to being totally nonnegative?

- Can we determine $\max _{x \in V} \operatorname{var}(x)$ from the Plücker coordinates of V ?

Theorem (Karp (2015))

Let $V \in \mathrm{Gr}_{k, n}$ and $m \geq k-1$.
(i) If $\operatorname{var}(x) \leq m$ for all $x \in V$, then

$$
\operatorname{var}\left(\left(\Delta_{J \cup\{i\}}(V)\right)_{i \notin J}\right) \leq m-k+1 \quad \text { for all } J \in\binom{[n]}{k-1}
$$

The converse holds if V is generic (i.e. $\Delta_{I}(V) \neq 0$ for all I).
(ii) We can perturb V into a generic W with $\max _{x \in V} \operatorname{var}(x)=\max _{x \in W} \operatorname{var}(x)$.

- e.g. Let $V:=\left[\begin{array}{cccc}1 & 0 & -2 & 4 \\ 0 & 2 & 1 & 1\end{array}\right] \in \mathrm{Gr}_{2,4}$ and $m:=2$. The fact that $\operatorname{var}(x) \leq 2$ for all $x \in V$ is equivalent to the fact that the 4 sequences $\left(\Delta_{\{1,2\}}, \Delta_{\{1,3\}}, \Delta_{\{1,4\}}\right)=(2,1,1), \quad\left(\Delta_{\{1,3\}}, \Delta_{\{2,3\}}, \Delta_{\{3,4\}}\right)=(1,4,-6)$,
$\left(\Delta_{\{1,2\}}, \Delta_{\{2,3\}}, \Delta_{\{2,4\}}\right)=(2,4,-8), \quad\left(\Delta_{\{1,4\}}, \Delta_{\{2,4\}}, \Delta_{\{3,4\}}\right)=(1,-8,-6)$ each change sign at most once.

How close is a subspace to being totally nonnegative?

- Can we determine $\max _{x \in V} \operatorname{var}(x)$ from the Plücker coordinates of V ?

Theorem (Karp (2015))

Let $V \in \mathrm{Gr}_{k, n}$ and $m \geq k-1$.
(i) If $\operatorname{var}(x) \leq m$ for all $x \in V$, then

$$
\operatorname{var}\left(\left(\Delta_{J \cup\{i\}}(V)\right)_{i \notin J}\right) \leq m-k+1 \quad \text { for all } J \in\binom{[n]}{k-1}
$$

The converse holds if V is generic (i.e. $\Delta_{I}(V) \neq 0$ for all I).
(ii) We can perturb V into a generic W with $\max _{x \in V} \operatorname{var}(x)=\max _{x \in W} \operatorname{var}(x)$.

- e.g. Consider \(\left[\begin{array}{llll}1 \& 0 \& 1 \& 0

0 \& 1 \& 0 \& 1\end{array}\right] \rightsquigarrow\left[\right.\)| 1 | 0 | | 0 |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 0.1 | 1 |\(] \rightsquigarrow\left[\begin{array}{cccc}1 \& 0 \& 1 \& 0.01

0 \& 1 \& 0.1 \& 1.001\end{array}\right]\)

The 4 sequences of Plücker coordinates are
$\left(\Delta_{\{1,2\}}, \Delta_{\{1,3\}}, \Delta_{\{1,4\}}\right)=(1, \stackrel{0.1}{\varnothing}, \underset{\not D}{1.001}$,
$\left(\Delta_{\{1,3\}}, \Delta_{\{2,3\}}, \Delta_{\{3,4\}}\right)=(\stackrel{0.1}{\varnothing},-1,1)$,
$\left(\Delta_{\{1,2\}}, \Delta_{\{2,3\}}, \Delta_{\{2,4\}}\right)=(1,-1, \stackrel{-0.01}{ })^{-}$,
$\left(\Delta_{\{1,4\}}, \Delta_{\{2,4\}}, \Delta_{\{3,4\}}\right) \stackrel{1.001}{=}(\not, \underset{\varnothing}{-0.01}, 1)$.

The totally positive Grassmannian

- We say that $V \in \mathrm{Gr}_{k, n}$ is totally positive if $\Delta_{I}(V)>0$ for all $I \in\binom{[n]}{k}$.
- For $x \in \mathbb{R}^{n}$, let $\overline{\operatorname{var}}(x)$ be the maximum of $\operatorname{var}(y)$ over all $y \in \mathbb{R}^{n}$ obtained from x by changing zero components of x.

$$
\operatorname{var}((\overparen{1,-4,0,-3,6,0,-1)})=5
$$

Theorem (Gantmakher, Krein (1950))

$V \in \mathrm{Gr}_{k, n}$ is totally positive iff $\overline{\operatorname{var}}(x) \leq k-1$ for all nonzero $x \in V$.

Theorem (Karp (2015))

Let $V \in \mathrm{Gr}_{k, n}$ and $m \geq k-1$. Then $\operatorname{var}(x) \leq m$ for all nonzero $x \in V$ iff

$$
\overline{\operatorname{var}}\left(\left(\Delta_{J \cup\{i\}}(V)\right)_{i \notin J}\right) \leq m-k+1
$$

for all $J \in\binom{[n]}{k-1}$ such that $\Delta_{J \cup\{i\}}(V) \neq 0$ for some i.

- Note that var is increasing while $\overline{\mathrm{var}}$ is decreasing with respect to genericity.

Oriented matroids

- An oriented matroid is a combinatorial abstraction of a real subspace, which records the Plücker coordinates up to sign, or equivalently the vectors up to sign.

LOOK INSIDE!

- These results generalize to oriented matroids.

The cell decomposition of $\mathrm{Gr}_{k, n}^{\geq 0}$

- Given $V \in \operatorname{Gr}_{k, n}$, let $M(V):=\left\{I \in\binom{[n]}{k}: \Delta_{I}(V) \neq 0\right\}$, called the matroid of V. The matroid stratification of $\mathrm{Gr}_{k, n}^{\geq 0}$ is a CW-decomposition.

$$
\mathrm{Gr}_{1,3}^{\geq 0} \cong\{1\},\{2\} \overbrace{\{2\}}^{\{1\},\{3\}} \overbrace{\{2\},\{3\}}^{\{1\}},\{3\}
$$

- How can we find the cell of V (i.e. $M(V)$) in $\mathrm{Gr}_{k, n}^{\geq 0}$ using sign patterns?

Exercise

Let $V \in \mathrm{Gr}_{k, n}$ and $I \in\binom{[n]}{k}$. Then $\Delta_{I}(V) \neq 0$ iff V realizes all 2^{k} sign patterns in $\{+,-\}^{k}$ on I.

- Moreover, given $\omega \in\{+,-\}^{k}$, there exists $V \in \mathrm{Gr}_{k, n}$ which realizes all 2^{k} sign patterns in $\{+,-\}^{k}$ on $/$ except for $\pm \omega$ (assuming $n>k$).

The cell decomposition of $\mathrm{Gr}_{k, n}^{\geq 0}$

- Given $V \in \operatorname{Gr}_{k, n}$, let $M(V):=\left\{I \in\binom{[n]}{k}: \Delta_{l}(V) \neq 0\right\}$, called the matroid of V. The matroid stratification of $\mathrm{Gr}_{k, n}^{\geq 0}$ is a CW-decomposition.
- How can we find the cell of V (i.e. $M(V)$) in $\mathrm{Gr}_{k, n}^{\geq 0}$ using sign patterns?

Theorem (Karp (2015))

Let $V \in \mathrm{Gr}_{k, n}^{\geq 0}$ and $I \in\binom{[n]}{k}$. Then $\Delta_{I}(V) \neq 0$ iff V realizes the following k sign patterns on I :
$(+,-,+,-,+,-, \cdots),(+,+,-,+,-,+, \cdots),(+,-,-,+,-,+, \cdots), \cdots$.

- Compare this to the fact that the matroid stratification of $\mathrm{Gr}_{k, n}^{\geq 0}$ is the refinement of n cyclically shifted Schubert stratifications (vs. all $n!$).

Further directions

- Is there an efficient way to test whether a given $V \in \mathrm{Gr}_{k, n}$ is totally positive using the data of sign patterns? (For Plücker coordinates, in order to test whether V is totally positive, we only need to check that some particular $k(n-k)$ Plücker coordinates are positive, not all $\binom{n}{k}$.)
- Is there a simple way to index the cell decomposition of $\mathrm{Gr}_{k, n}^{\geq 0}$ using the data of sign patterns?
- Is there a nice stratification of the subset of the Grassmannian

$$
\left\{V \in \operatorname{Gr}_{k, n}: \operatorname{var}(x) \leq m \text { for all } x \in V\right\}
$$

for fixed m ? (If $m=k-1$, this is $\mathrm{Gr}_{k, n}^{\geq 0}$.)

Thank you!

