
Sign variation, the Grassmannian, and total positivity

arXiv:1503.05622

Slides available at math.berkeley.edu/~skarp

Steven N. Karp, UC Berkeley

FPSAC 2015
KAIST, Daejeon

Steven N. Karp (UC Berkeley) Sign variation, the Grassmannian, and total positivity FPSAC 2015 1 / 9

http://arxiv.org/abs/1503.05622
http://math.berkeley.edu/~skarp


The Grassmannian Grk ,n

The Grassmannian Grk,n is the set of k-dimensional subspaces V of Rn.

V := 0

(1, 0,−4,−3)

(0, 1, 3, 2)

=

[
1 0 −4 −3
0 1 3 2

]
=

[
1 1 −1 −1
0 1 3 2

] ∈ Gr2,4

∆{1,2} = 1,∆{1,3} = 3,∆{1,4} = 2,∆{2,3} = 4,∆{2,4} = 3,∆{3,4} = 1

Given V ∈ Grk,n in the form of a k × n matrix, for I ∈
([n]
k

)
let ∆I (V ) be

the k × k minor of V with columns I . The Plücker coordinates ∆I (V ) are
well-defined up to multiplication by a global nonzero constant.

We say that V ∈ Grk,n is totally nonnegative if ∆I (V ) ≥ 0 for all

I ∈
([n]
k

)
. Denote the set of such V by Gr≥0k,n, called the totally nonnegative

Grassmannian.
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Sign variation

For x ∈ Rn, let var(x) be the number of sign changes in the sequence
x1, x2, · · ·, xn, ignoring any zeros. (We define var(0) := −1.)

var((1,−4, 0,−3, 6, 0,−1)) = var((1,−4,−3, 6,−1)) = 3

Theorem (Gantmakher, Krein (1950); Schoenberg, Whitney (1951))

Let V ∈ Grk,n. Then V is totally nonnegative iff var(x) ≤ k − 1 for all
x ∈ V .

e.g. V := 0

(1, 0,−4,−3)

(0, 1, 3, 2)

∈ Gr≥02,4 .

Note that every V ∈ Grk,n contains a vector x with var(x) ≥ k − 1. So,
the totally nonnegative subspaces are those whose vectors change sign as
few times as possible.
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A history of total positivity

Pólya (1912) asked which linear A : Rk → Rn satisfy var(A(x)) ≤ var(x)
for all x ∈ Rk . Schoenberg (1930) showed that for injective A, this holds
iff for j = 1, · · ·, k , all nonzero j × j minors of A have the same sign.

Gantmakher, Krein (1935): The eigenvalues of a totally positive square
matrix (all whose minors are positive) are real, positive, and distinct.

Gantmakher, Krein (1950): Oscillation Matrices and Kernels and Small
Vibrations of Mechanical Systems, 359pp.

Whitney (1952): The n × n totally positive matrices are dense in the
n × n totally nonnegative matrices.

Aissen, Schoenberg, Whitney (1952): Let r1, · · ·, rn ∈ C. Then r1, · · ·, rn
are all nonnegative reals iff sλ(r1, · · ·, rn) ≥ 0 for all partitions λ.

Karlin (1968): Total Positivity, Volume I, 576pp.
Lusztig (1994) developed a theory of total positivity for G and G/P.
Fomin and Zelevinsky (2000s) defined cluster algebras.
Postnikov (2006) studied Gr≥0k,n from a combinatorial perspective.
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How close is a subspace to being totally nonnegative?

Can we determine maxx∈V var(x) from the Plücker coordinates of V ?

Theorem (Karp (2015))

Let V ∈ Grk,n and m ≥ k − 1.
(i) If var(x) ≤ m for all x ∈ V , then

var((∆J∪{i}(V ))i /∈J) ≤ m − k + 1 for all J ∈
( [n]
k−1

)
.

The converse holds if V is generic (i.e. ∆I (V ) 6= 0 for all I ).
(ii) We can perturb V into a generic W with max

x∈V
var(x) = max

x∈W
var(x).

e.g. Let V :=

[
1 0 −2 4
0 2 1 1

]
∈ Gr2,4 and m := 2. The fact that

var(x) ≤ 2 for all x ∈ V is equivalent to the fact that the 4 sequences

(∆{1,2},∆{1,3},∆{1,4}) = (2, 1, 1), (∆{1,3},∆{2,3},∆{3,4}) = (1, 4,−6),

(∆{1,2},∆{2,3},∆{2,4}) = (2, 4,−8), (∆{1,4},∆{2,4},∆{3,4}) = (1,−8,−6)

each change sign at most once.
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How close is a subspace to being totally nonnegative?

Can we determine maxx∈V var(x) from the Plücker coordinates of V ?

Theorem (Karp (2015))

Let V ∈ Grk,n and m ≥ k − 1.
(i) If var(x) ≤ m for all x ∈ V , then

var((∆J∪{i}(V ))i /∈J) ≤ m − k + 1 for all J ∈
( [n]
k−1

)
.

The converse holds if V is generic (i.e. ∆I (V ) 6= 0 for all I ).
(ii) We can perturb V into a generic W with max

x∈V
var(x) = max

x∈W
var(x).

0.1 0.01

e.g. Consider

[
1 0 1 0
0 1 0 1

]
 

[
1 0 1 0
0 1 0.1 1

]
 

[
1 0 1 0.01
0 1 0.1 1.001

]
.

The 4 sequences of Plücker coordinates are

(∆{1,2},∆{1,3},∆{1,4}) = (1, 0
0.1

, 1
1.001

), (∆{1,3},∆{2,3},∆{3,4}) = (0
0.1

,−1, 1),

(∆{1,2},∆{2,3},∆{2,4}) = (1,−1, 0
−0.01

), (∆{1,4},∆{2,4},∆{3,4}) = (1
1.001

, 0
−0.01

, 1).
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The totally positive Grassmannian

We say that V ∈ Grk,n is totally positive if ∆I (V ) > 0 for all I ∈
([n]
k

)
.

For x ∈ Rn, let var(x) be the maximum of var(y) over all y ∈ Rn

obtained from x by changing zero components of x .

var((1,−4, 0,−3, 6, 0,−1)) = 5

Theorem (Gantmakher, Krein (1950))

V ∈ Grk,n is totally positive iff var(x) ≤ k − 1 for all nonzero x ∈ V .

Theorem (Karp (2015))

Let V ∈ Grk,n and m ≥ k − 1. Then var(x) ≤ m for all nonzero x ∈ V iff

var((∆J∪{i}(V ))i /∈J) ≤ m − k + 1

for all J ∈
( [n]
k−1

)
such that ∆J∪{i}(V ) 6= 0 for some i .

Note that var is increasing while var is decreasing with respect to
genericity.
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Oriented matroids

An oriented matroid is a combinatorial abstraction of a real subspace,
which records the Plücker coordinates up to sign, or equivalently the
vectors up to sign.

These results generalize to oriented matroids.
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The cell decomposition of Gr≥0
k ,n

Given V ∈ Grk,n, let M(V ) := {I ∈
([n]
k

)
: ∆I (V ) 6= 0}, called the

matroid of V . The matroid stratification of Gr≥0k,n is a CW-decomposition.

Gr≥01,3
∼=

{1}

{2} {3}

{1},
{2}, {3}

{1}, {2}

{2}, {3}

{1}, {3}

How can we find the cell of V (i.e. M(V )) in Gr≥0k,n using sign patterns?

Exercise

Let V ∈ Grk,n and I ∈
([n]
k

)
. Then ∆I (V ) 6= 0 iff V realizes all 2k sign

patterns in {+,−}k on I .

Moreover, given ω ∈ {+,−}k , there exists V ∈ Grk,n which realizes all
2k sign patterns in {+,−}k on I except for ±ω (assuming n > k).
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The cell decomposition of Gr≥0
k ,n

Given V ∈ Grk,n, let M(V ) := {I ∈
([n]
k

)
: ∆I (V ) 6= 0}, called the

matroid of V . The matroid stratification of Gr≥0k,n is a CW-decomposition.

Gr≥01,3
∼=

{1}

{2} {3}

{1},
{2}, {3}

{1}, {2}

{2}, {3}

{1}, {3}

How can we find the cell of V (i.e. M(V )) in Gr≥0k,n using sign patterns?

Theorem (Karp (2015))

Let V ∈ Gr≥0k,n and I ∈
([n]
k

)
. Then ∆I (V ) 6= 0 iff V realizes the following

k sign patterns on I :

(+,−,+,−,+,−, · · · ), (+,+,−,+,−,+, · · · ), (+,−,−,+,−,+, · · · ), · · · .

Compare this to the fact that the matroid stratification of Gr≥0k,n is the
refinement of n cyclically shifted Schubert stratifications (vs. all n!).
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Further directions

Is there an efficient way to test whether a given V ∈ Grk,n is totally
positive using the data of sign patterns? (For Plücker coordinates, in order
to test whether V is totally positive, we only need to check that some
particular k(n − k) Plücker coordinates are positive, not all

(n
k

)
.)

Is there a simple way to index the cell decomposition of Gr≥0k,n using the
data of sign patterns?

Is there a nice stratification of the subset of the Grassmannian

{V ∈ Grk,n : var(x) ≤ m for all x ∈ V },
for fixed m? (If m = k − 1, this is Gr≥0k,n.)

Thank you!
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