# The m = 1 amplituhedron and cyclic hyperplane arrangements

#### arXiv:1608.08288 Slides available at math.berkeley.edu/~skarp



## Steven N. Karp, UC Berkeley joint work with Lauren Williams

#### FPSAC 2017 Queen Mary University of London

Steven N. Karp (UC Berkeley)

The m = 1 amplituhedron and cyclic hyperplane arrangements

FPSAC 2017 1 / 9

## The Grassmannian Gr<sub>k,n</sub>

• The Grassmannian  $Gr_{k,n}$  is the set of k-dimensional subspaces V of  $\mathbb{R}^n$ .

$$V := \begin{bmatrix} 0 & (1,0,-4,-3) \\ 0 & 1 & 3 & 2 \\ 0 & 1 & 3 & 2 \end{bmatrix} \in \operatorname{Gr}_{2,4}^{\geq 0}$$
$$= \begin{bmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & 3 & 2 \end{bmatrix}$$

$$\Delta_{\{1,2\}} = 1, \, \Delta_{\{1,3\}} = 3, \, \Delta_{\{1,4\}} = 2, \, \Delta_{\{2,3\}} = 4, \, \Delta_{\{2,4\}} = 3, \, \Delta_{\{3,4\}} = 1$$

Given V ∈ Gr<sub>k,n</sub> in the form of a k × n matrix, for k-subsets I of {1,..., n} let Δ<sub>I</sub>(V) be the k × k minor of V in columns I. The Plücker coordinates Δ<sub>I</sub>(V) are well defined up to a common nonzero scalar.
We say that V ∈ Gr<sub>k,n</sub> is totally nonnegative if Δ<sub>I</sub>(V) ≥ 0 for all k-subsets I. The set of all totally nonnegative V forms the totally nonnegative Grassmannian Gr<sup>≥0</sup><sub>k,n</sub>.

## Sign variation

• For  $v \in \mathbb{R}^n$ , let var(v) be the number of sign changes in the sequence  $(v_1, v_2, \ldots, v_n)$ , ignoring any zeros.

$$var(1, -4, 0, -3, 6, 0, -1) = var(1, -4, -3, 6, -1) = 3$$

Similarly, let  $\overline{var}(v)$  be the maximum number of sign changes we can get if we choose a sign for each zero component of v.

$$\overline{var}(1, -4, 0, -3, 6, 0, -1) = 5$$

#### Theorem (Gantmakher, Krein (1950))

Let  $V \in Gr_{k,n}$ . The following are equivalent: (i) V is totally nonnegative; (ii)  $var(v) \le k - 1$  for all  $v \in V$ ; (iii)  $\overline{var}(w) \ge k$  for all  $w \in V^{\perp}$ .

• e.g. 
$$\begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \end{bmatrix} \in \mathsf{Gr}_{2,4}^{\geq 0}.$$

• The upper bound k-1 and the lower bound k are both 'best possible'.

3/9

## The cell decomposition of $Gr_{k,n}^{\geq 0}$

•  $\operatorname{Gr}_{k,n}^{\geq 0}$  has a cell decomposition. Each cell is specified by requiring some subset of the Plücker coordinates to be strictly positive, and the rest to equal zero.



•  $\operatorname{Gr}_{1,n}^{\geq 0}$  is an (n-1)-dimensional simplex in  $\mathbb{P}^{n-1}$ . So, one can think of the totally nonnegative Grassmannian  $\operatorname{Gr}_{k,n}^{\geq 0}$  as a generalization of a simplex.

## Cyclic hyperplane arrangements

• A cyclic polytope is a polytope (up to combinatorial equivalence) whose vertices line on the moment curve in  $\mathbb{R}^k$ 

$$(t,t^2,\ldots,t^k)$$
  $(t>0).$ 



• Cyclic polytopes achieve the upper bound in the *upper bound theorem* of McMullen and Stanley.

• A cyclic hyperplane arrangement consists of hyperplanes in  $\mathbb{R}^k$  of the form

$$tx_1 + t^2x_2 + \cdots + t^kx_k + 1 = 0$$
  $(t > 0).$ 

## Faces of cyclic hyperplane arrangements



#### Theorem (Karp, Williams)

Let  $\mathcal{H}$  be a cyclic hyperplane arrangement of n hyperplanes in  $\mathbb{R}^k$ . (i) The bounded faces of  $\mathcal{H}$  are labeled precisely by those sign vectors  $\sigma \in \{0, +, -\}^n$  (up to sign) with  $\overline{\operatorname{var}}(\sigma) = k$ . (ii) The unbounded faces of  $\mathcal{H}$  are labeled precisely by  $\sigma$  with  $\overline{\operatorname{var}}(\sigma) < k$ .

6 /

## Grassmann polytopes

• By definition, a polytope is the image of a simplex under an affine map:



A Grassmann polytope is the image of a map  $\operatorname{Gr}_{k,n}^{\geq 0} \to \operatorname{Gr}_{k,k+m}$  induced by a linear map  $Z : \mathbb{R}^n \to \mathbb{R}^{k+m}$ . (Here  $m \geq 0$  with  $k + m \leq n$ .) • When the matrix Z has positive maximal minors, the corresponding Grassmann polytope is called an *amplituhedron*, denoted  $\mathcal{A}_{n,k,m}(Z)$ . • Amplituhedra are a common generalization of cyclic polytopes (k = 1)and totally nonnegative Grassmannians (k + m = n). They were introduced by Arkani-Hamed and Trnka in their study of *scattering amplitudes*.

### Conjecture (Arkani-Hamed, Trnka (2014))

The m = 4 amplituhedron  $\mathcal{A}_{n,k,4}(Z)$  is 'triangulated' by the images of certain 4k-dimensional cells of  $\operatorname{Gr}_{k,n}^{\geq 0}$ , coming from the BCFW recursion.

• This conjecture appears to be difficult, so we first considered m = 1.

#### Lemma

Let  $W \in Gr_{k+m,n}$  denote the subspace spanned by the rows of Z. Then  $\mathcal{A}_{n,k,m}(Z) \cong \mathcal{B}_{n,k,m}(W) := \{V^{\perp} \cap W : V \in Gr_{k,n}^{\geq 0}\} \subseteq Gr_m(W).$ 

Using results of Gantmakher and Krein, we obtain

 $\mathcal{B}_{n,k,m}(W) \subseteq \{X \in \mathsf{Gr}_m(W): k \leq \overline{\mathrm{var}}(v) \leq k+m-1 \text{ for all } v \in X \setminus \{0\}\}.$ 

#### Problem

Does equality hold above?

## The m = 1 amplituhedron

• We showed that equality does hold when m = 1:

$$\mathcal{B}_{n,k,1}(W) = \{w \in \mathbb{P}(W) : \overline{\operatorname{var}}(w) = k\} \subseteq \mathbb{P}(W).$$

#### Theorem (Karp, Williams)

(i)  $\mathcal{A}_{n,k,1}(Z)$  is isomorphic to the complex of bounded faces of a cyclic hyperplane arrangement of n hyperplanes in  $\mathbb{R}^k$ . (ii)  $\mathcal{A}_{n,k,1}(Z)$  is isomorphic to a subcomplex of cells of  $\mathrm{Gr}_{k,n}^{\geq 0}$ . (iii)  $\mathcal{A}_{n,k,1}(Z)$  is homeomorphic to a closed ball of dimension k.

• Part (iii) follows directly from part (i) by a general result of Dong.

