The $m=1$ amplituhedron and cyclic hyperplane arrangements

arXiv:1608. 08288

Slides available at math.berkeley.edu/~skarp

Steven N. Karp, UC Berkeley joint work with Lauren Williams

FPSAC 2017
Queen Mary University of London

The Grassmannian $\mathrm{Gr}_{k, n}$

- The Grassmannian $\mathrm{Gr}_{k, n}$ is the set of k-dimensional subspaces V of \mathbb{R}^{n}.

$$
\Delta_{\{1,2\}}=1, \Delta_{\{1,3\}}=3, \Delta_{\{1,4\}}=2, \Delta_{\{2,3\}}=4, \Delta_{\{2,4\}}=3, \Delta_{\{3,4\}}=1
$$

- Given $V \in \mathrm{Gr}_{k, n}$ in the form of a $k \times n$ matrix, for k-subsets I of $\{1, \ldots, n\}$ let $\Delta_{I}(V)$ be the $k \times k$ minor of V in columns l. The Plücker coordinates $\Delta_{l}(V)$ are well defined up to a common nonzero scalar. - We say that $V \in \mathrm{Gr}_{k, n}$ is totally nonnegative if $\Delta_{l}(V) \geq 0$ for all k-subsets I. The set of all totally nonnegative V forms the totally nonnegative Grassmannian $\mathrm{Gr}_{k, n}^{\geq 0}$.

Sign variation

- For $v \in \mathbb{R}^{n}$, let $\operatorname{var}(v)$ be the number of sign changes in the sequence $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, ignoring any zeros.

$$
\operatorname{var}(1,-4,0,-3,6,0,-1)=\operatorname{var}(\overparen{1,-4},-3,6,-1)=3
$$

Similarly, let $\overline{\operatorname{var}}(v)$ be the maximum number of sign changes we can get if we choose a sign for each zero component of v.

$$
\operatorname{var}(\overparen{1,-4,0,-3,6,0,-1})=5
$$

Theorem (Gantmakher, Krein (1950))

Let $V \in \mathrm{Gr}_{k, n}$. The following are equivalent:
(i) V is totally nonnegative;
(ii) $\operatorname{var}(v) \leq k-1$ for all $v \in V$;
(iii) $\operatorname{var}(w) \geq k$ for all $w \in V^{\perp}$.

- e.g. $\left[\begin{array}{cccc}1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2\end{array}\right] \in \operatorname{Gr}_{2,4}^{\geq 0}$.
- The upper bound $k-1$ and the lower bound k are both 'best possible'.

The cell decomposition of $\mathrm{Gr}_{k, n}^{\geq 0}$

- $\mathrm{Gr}_{k, n}^{\geq 0}$ has a cell decomposition. Each cell is specified by requiring some subset of the Plücker coordinates to be strictly positive, and the rest to equal zero.

- $\mathrm{Gr}_{1, n}^{\geq 0}$ is an $(n-1)$-dimensional simplex in \mathbb{P}^{n-1}. So, one can think of the totally nonnegative Grassmannian $\mathrm{Gr}_{k, n}^{\geq 0}$ as a generalization of a simplex.

Cyclic hyperplane arrangements

- A cyclic polytope is a polytope (up to combinatorial equivalence) whose vertices line on the moment curve in \mathbb{R}^{k}

$$
\left(t, t^{2}, \ldots, t^{k}\right) \quad(t>0)
$$

- e.g. $k=2$

- Cyclic polytopes achieve the upper bound in the upper bound theorem of McMullen and Stanley.
- A cyclic hyperplane arrangement consists of hyperplanes in \mathbb{R}^{k} of the form

$$
t x_{1}+t^{2} x_{2}+\cdots+t^{k} x_{k}+1=0 \quad(t>0)
$$

Faces of cyclic hyperplane arrangements

Theorem (Karp, Williams)

Let \mathcal{H} be a cyclic hyperplane arrangement of n hyperplanes in \mathbb{R}^{k}.
(i) The bounded faces of \mathcal{H} are labeled precisely by those sign vectors $\sigma \in\{0,+,-\}^{n}$ (up to sign) with $\operatorname{var}(\sigma)=k$.
(ii) The unbounded faces of \mathcal{H} are labeled precisely by σ with $\operatorname{var}(\sigma)<k$.

Grassmann polytopes

- By definition, a polytope is the image of a simplex under an affine map:

A Grassmann polytope is the image of a map $\mathrm{Gr}_{k, n}^{\geq 0} \rightarrow \mathrm{Gr}_{k, k+m}$ induced by a linear map $Z: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k+m}$. (Here $m \geq 0$ with $k+m \leq n$.)

- When the matrix Z has positive maximal minors, the corresponding Grassmann polytope is called an amplituhedron, denoted $\mathcal{A}_{n, k, m}(Z)$.
- Amplituhedra are a common generalization of cyclic polytopes $(k=1)$ and totally nonnegative Grassmannians $(k+m=n)$. They were introduced by Arkani-Hamed and Trnka in their study of scattering amplitudes.

The amplituhedron

Conjecture (Arkani-Hamed, Trnka (2014))

The $m=4$ amplituhedron $\mathcal{A}_{n, k, 4}(Z)$ is 'triangulated' by the images of certain $4 k$-dimensional cells of $\mathrm{Gr}_{k, n}^{\geq 0}$, coming from the BCFW recursion.

- This conjecture appears to be difficult, so we first considered $m=1$.

Lemma

Let $W \in \mathrm{Gr}_{k+m, n}$ denote the subspace spanned by the rows of Z. Then

$$
\mathcal{A}_{n, k, m}(Z) \cong \mathcal{B}_{n, k, m}(W):=\left\{V^{\perp} \cap W: V \in \operatorname{Gr}_{k, n}^{\geq 0}\right\} \subseteq \operatorname{Gr}_{m}(W)
$$

- Using results of Gantmakher and Krein, we obtain $\mathcal{B}_{n, k, m}(W) \subseteq\left\{X \in \operatorname{Gr}_{m}(W): k \leq \overline{\operatorname{var}}(v) \leq k+m-1\right.$ for all $\left.v \in X \backslash\{0\}\right\}$.

Problem

Does equality hold above?

The $m=1$ amplituhedron

- We showed that equality does hold when $m=1$:

$$
\mathcal{B}_{n, k, 1}(W)=\{w \in \mathbb{P}(W): \overline{\operatorname{var}}(w)=k\} \subseteq \mathbb{P}(W)
$$

Theorem (Karp, Williams)

(i) $\mathcal{A}_{n, k, 1}(Z)$ is isomorphic to the complex of bounded faces of a cyclic hyperplane arrangement of n hyperplanes in \mathbb{R}^{k}.
(ii) $\mathcal{A}_{n, k, 1}(Z)$ is isomorphic to a subcomplex of cells of $\mathrm{Gr}_{k, n}^{\geq 0}$.
(iii) $\mathcal{A}_{n, k, 1}(Z)$ is homeomorphic to a closed ball of dimension k.

- Part (iii) follows directly from part (i) by a general result of Dong.

$$
\mathcal{A}_{6,2,1}
$$

