Gradient flows on totally nonnegative flag varieties

Slides available at www-personal.umich.edu/~snkarp

Steven N. Karp (LaCIM, Université du Québec à Montréal) joint work with Anthony Bloch arXiv:2109.04558

> December 9th, 2021 MFO mini-workshop

Schur-Horn theorem

• Let $Perm(\lambda_1, \ldots, \lambda_n)$ be the polytope in \mathbb{R}^n whose vertices are all permutations of $(\lambda_1, \ldots, \lambda_n)$.

• Let μ send a matrix to its diagonal, e.g. $\mu \left(\frac{1}{33} \begin{vmatrix} 50 & 28 & 0\\ 28 & 81 & 8\\ 0 & 8 & 67 \end{vmatrix} \right) = \left(\frac{50}{33}, \frac{81}{33}, \frac{67}{33} \right).$

Theorem (Schur (1923), Horn (1953))

The map μ sends the space of $n \times n$ symmetric matrices with eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ onto $\text{Perm}(\lambda_1, \ldots, \lambda_n)$.

Toda lattice

• The Toda lattice (1967) is a Hamiltonian system with

• Flaschka (1974) expressed the Toda flow in *Lax form*: $\dot{L} = [L, \pi_{skew}(L)]$, where *L* is an $n \times n$ symmetric tridiagonal matrix with positive subdiagonal.

$$L = \begin{bmatrix} b_1 & a_1 & 0 \\ a_1 & b_2 & a_2 \\ 0 & a_2 & b_3 \end{bmatrix}, \quad \pi_{\mathsf{skew}}(L) = \begin{bmatrix} 0 & -a_1 & 0 \\ a_1 & 0 & -a_2 \\ 0 & a_2 & 0 \end{bmatrix}, \quad a_i = \frac{1}{2}e^{\frac{q_i - q_{i+1}}{2}}, \quad b_i = -\frac{1}{2}p_i.$$

• The eigenvalues of L are distinct and are invariant under the Toda flow. As $t \to \pm \infty$, L approaches a diagonal matrix with sorted diagonal entries. • Let $\mathcal{J}_{\lambda}^{>0}$ (respectively, $\mathcal{J}_{\lambda}^{\geq 0}$) denote the manifold of all L with fixed spectrum $\lambda = (\lambda_1, \ldots, \lambda_n)$ and all $a_i > 0$ (respectively, $a_i \ge 0$).

Jacobi manifold $\mathcal{J}_{oldsymbol{\lambda}}^{\geq 0}$

Theorem (Moser (1975))

The map which sends $L \in \mathcal{J}_{\lambda}^{>0}$ to the vector of first entries of its normalized eigenvectors is a homeomorphism onto $S_{>0}^{n-1}$.

• e.g.
$$L = \frac{1}{33} \begin{bmatrix} 50 & 28 & 0 \\ 28 & 81 & 8 \\ 0 & 8 & 67 \end{bmatrix} = \begin{bmatrix} \frac{16}{3} & \frac{7}{33} & \frac{28}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{16}{33} & \frac{28}{33} & \frac{7}{33} \\ \frac{7}{33} & \frac{4}{33} & -\frac{32}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33} \end{bmatrix}$$

 $\mapsto (\frac{16}{33}, \frac{7}{33}, \frac{28}{33}) \in S_{>0}^{2}.$

Theorem (Tomei (1984))

The space $\mathcal{J}_{\lambda}^{\geq 0}$ is homeomorphic to $\operatorname{Perm}(\lambda)$.

• However, $\mu : \mathcal{J}_{\lambda}^{\geq 0} \to \operatorname{Perm}(\lambda)$ is neither injective nor surjective. • e.g. $\operatorname{Perm}(3,2,1) =$, $\mu(\mathcal{J}_{(3,2,1)}^{\geq 0}) =$.

Jacobi manifold $\mathcal{J}_{oldsymbol{\lambda}}^{\geq 0}$

Theorem (Bloch, Flaschka, Ratiu (1990))

Let Λ denote the diagonal matrix with diagonal λ . Then the map

$$L = g \Lambda g^{-1} \mapsto \mu(g^{-1} \Lambda g) \qquad (g \in O_n)$$

is a homeomorphism $\mathcal{J}_{\boldsymbol{\lambda}}^{\geq 0} \to \mathsf{Perm}(\boldsymbol{\lambda})$, and is a diffeomorphism on $\mathcal{J}_{\boldsymbol{\lambda}}^{> 0}$.

• e.g.
$$\mathcal{L} = \begin{bmatrix} \frac{16}{33} & \frac{7}{33} & \frac{28}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{16}{3} & \frac{28}{33} & \frac{7}{33} \\ \frac{7}{33} & \frac{4}{33} & -\frac{32}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33} \end{bmatrix}$$

 $\mapsto \mu \left(\begin{bmatrix} \frac{16}{33} & \frac{28}{33} & \frac{7}{33} \\ \frac{7}{33} & \frac{4}{33} & -\frac{32}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 0 \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33} \end{bmatrix} \right) = \left(\frac{795}{363}, \frac{401}{363}, \frac{982}{363} \right).$

• The key to the proof is to define a map $L = g\Lambda g^{-1} \mapsto g^{-1}\Lambda g$ on $\mathcal{J}_{\lambda}^{\geq 0}$, by making a choice of $g \in O_n$ which depends smoothly on $L \in \mathcal{J}_{\lambda}^{\geq 0}$. We show that total positivity provides a natural way to make this choice and to generalize it beyond the tridiagonal case.

Totally nonnegative flag varieties

• Let $K \subseteq \{1, \ldots, n-1\}$. The partial flag variety $\mathsf{Fl}_{K \cap n}(\mathbb{C})$ consists of tuples $V = (V_k)_{k \in K}$ of nested subspaces of \mathbb{C}^n , where dim $(V_k) = k$. • e.g. $FI_{\{1,3\};4}(\mathbb{C}) = \{(V_1, V_3) : V_1 \subset V_3 \subset \mathbb{C}^4, \dim(V_1) = 1, \dim(V_3) = 3\}.$ • Two special cases: when $K = \{1, \ldots, n-1\}$, we obtain the *complete* flag variety $Fl_n(\mathbb{C})$; when $K = \{k\}$, we obtain the Grassmannian $Gr_{k,n}(\mathbb{C})$. • We say that $g \in GL_n(\mathbb{C})$ represents $V \in Fl_{K \cdot n}(\mathbb{C})$ if each V_k is the span of the first k columns of g. We call V totally positive if it is represented by some g whose left-justified (i.e. initial) minors are all real and positive. We denote the set of such V by $Fl_{K,n}^{\geq 0}$. We let $Fl_{K,n}^{\geq 0}$ denote its closure. г16 28 T

• e.g.
$$\begin{bmatrix} 33 & 33 & 33 \\ 28 & 4 \\ 33 & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{7}{4} & 1 & 0 \\ \frac{7}{16} & \frac{17}{4} & 1 \end{bmatrix} \in \mathsf{Fl}_3^{>0}.$$

$$\mathsf{Gr}_{1,3}^{\geq 0} \qquad \qquad \mathsf{Fl}_3^{\geq 0} \qquad \qquad \mathsf{Fl}_3^{\geq 0}$$

Γ1

Topology of totally nonnegative flag varieties

Theorem (Galashin, Karp, Lam (2019))

The space $\operatorname{Fl}_{K;n}^{\geq 0}$ is homeomorphic to a closed ball.

Proof

Let M be the $n \times n$ tridiagonal matrix

$$\begin{bmatrix} 0 & 1 & 0 & \cdots \\ 1 & 0 & 1 & \cdots \\ 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$
. Then $V \mapsto \exp(tM)V$

for $t \in [0, \infty]$ contracts $\mathsf{Fl}_{\mathcal{K};n}^{\geq 0}$ onto a unique attractor in the interior.

Totally nonnegative adjoint orbits

• Let U_n be the group of $n \times n$ unitary matrices and u_n its Lie algebra of $n \times n$ skew-Hermitian matrices. For $\lambda_1 \ge \cdots \ge \lambda_n$, consider the adjoint orbit

$$\mathcal{O}_{\boldsymbol{\lambda}} := \{g(\mathrm{i}\Lambda)g^{-1} : g \in \mathsf{U}_n\} \subseteq \mathfrak{u}_n, \quad ext{ where } \Lambda := \mathsf{Diag}(\lambda_1, \dots, \lambda_n).$$

• Let $K := \{1 \le k \le n-1 : \lambda_k > \lambda_{k+1}\}$. Then we have the isomorphism $\mathcal{O}_{\lambda} \to \mathsf{Fl}_{K;n}(\mathbb{C}), \quad g(\mathrm{i}\Lambda)g^{-1} \mapsto g,$

sending a matrix to its flag of eigenvectors ordered by descending eigenvalue. • e.g. $\mathcal{O}_{(5,2,2,-1)} \cong \mathsf{Fl}_{\{1,3\};4}(\mathbb{C}).$

• We define $\mathcal{O}_{\lambda}^{>0}$ and $\mathcal{O}_{\lambda}^{\geq 0}$ to be the preimages of $\mathsf{Fl}_{K;n}^{>0}$ and $\mathsf{Fl}_{K;n}^{\geq 0}$.

• e.g.	$\begin{bmatrix} \frac{16}{33} \\ \frac{28}{33} \\ \frac{7}{33} \end{bmatrix}$	$ \frac{7}{33} $ $ \frac{4}{33} $ $ -\frac{32}{33} $	$ \frac{28}{33} \\ -\frac{17}{33} \\ \frac{4}{33} \end{bmatrix} $	[3i 0 0	0 2i 0	$\begin{bmatrix} 0\\ \\ 0\\ \\ i \end{bmatrix} \begin{bmatrix} \frac{16}{33}\\ \frac{7}{33}\\ \frac{28}{33} \end{bmatrix}$	$\frac{\frac{28}{33}}{\frac{4}{33}}$ $-\frac{17}{33}$	$\begin{bmatrix} 7\\33\\-\frac{32}{33}\\\frac{4}{33}\end{bmatrix}$	$=\frac{\mathrm{i}}{33}$	[50 28 0	28 81 8	0 8 67	$\in \mathcal{O}_{(3,2,1)}^{>0}.$
--------	--	--	---	---------------	--------------	--	--	--	--------------------------	----------------	---------------	--------------	-----------------------------------

Proposition (Bloch, Karp (2021))

If $\lambda_1 > \cdots > \lambda_n$, then the tridiagonal subset of $\mathcal{O}_{\lambda}^{\geq 0}$ is precisely $i\mathcal{J}_{\lambda}^{\geq 0}$.

Gradient flows on adjoint orbits

We consider the gradient flow on O_λ of the function L → 2ntr(LN), where N ∈ u_n. We work in the Kähler, normal, and induced metrics. When O_λ ≅ Gr_{k,n}(ℂ), all three metrics coincide up to dilation.
We say that the flow on O_λ strictly preserves positivity if trajectories starting in O_λ^{≥0} lie in O_λ^{>0} for all positive time. If so, we obtain a contractive flow with the Lyapunov function L → -2ntr(LN).

Proposition (Duistermaat, Kolk, Varadarajan (1983); Guest, Ohnita (1993))

The isomorphism $\mathcal{O}_{\lambda} \cong Fl_{K;n}(\mathbb{C})$ sends the gradient flow with respect to N in the Kähler metric to the flow $V(t) = \exp(tiN)V$ on $Fl_{K;n}(\mathbb{C})$.

• The contractive flow on $Fl_{K:n}^{\geq 0}$ considered earlier is such a flow.

Theorem (Bloch, Karp (2021))

If $\mathcal{O}_{\lambda} \ncong \text{Gr}_{k,n}(\mathbb{C})$, then the gradient flow with respect to N in the Kähler metric strictly preserves positivity if and only if $i N \in \mathcal{J}_{\mu}^{>0}$ for some μ .

• We obtain a slightly larger family of N's when $\mathcal{O}_{\lambda} \cong Gr_{k,n}(\mathbb{C})$.

Gradient flows: normal and induced metrics

Proposition (Brockett (1991); Bloch, Brockett, Ratiu (1992))

The gradient flow on \mathcal{O}_{λ} with respect to N in the normal metric is $\dot{L} = [L, [L, N]].$

Theorem (Bloch, Karp (2021))

If $\mathcal{O}_{\lambda} \cong Fl_n(\mathbb{C})$ with $n \ge 3$, then every gradient flow in the normal metric does not strictly preserve positivity.

Proposition (Bloch, Karp (2021))

The gradient flow on \mathcal{O}_{λ} with respect to N in the induced metric is $\dot{L} = [L, \mathrm{ad}_{L}^{-1}(N)].$

Proposition (Bloch, Karp (2021))

Let $\lambda_1 > \lambda_2 > \lambda_3$ satisfy $\frac{\lambda_1 - \lambda_2}{\lambda_2 - \lambda_3} \notin [\frac{1}{2 + 2\sqrt{2}}, 2 + 2\sqrt{2}]$. Then every gradient flow in the induced metric does not strictly preserve positivity.

Twist map

• Every element of $\operatorname{Fl}_n^{\geq 0}$ is represented by a unique $g \in \bigcup_n$ whose leftjustified minors are all nonnegative. Let $\vartheta(g) := ((-1)^{i+j}(g^{-1})_{i,j})_{1 \leq i,j \leq n}$.

• e.g.
$$\vartheta \left(\frac{1}{33} \begin{bmatrix} 16 & -7 & 28 \\ 28 & -4 & -17 \\ 7 & 32 & 4 \end{bmatrix} \right) = \frac{1}{33} \begin{bmatrix} 16 & -28 & 7 \\ 7 & -4 & -32 \\ 28 & 17 & 4 \end{bmatrix} \stackrel{\text{Fl}_n}{=} \begin{bmatrix} 16 & 16 \cdot 3 & 16 \cdot 3^2 \\ 7 & 7 \cdot 2 & 7 \cdot 2^2 \\ 28 & 28 \cdot 1 & 28 \cdot 1^2 \end{bmatrix}.$$

Theorem (Bloch, Karp (2021))

The involution ϑ defines a diffeomorphism $\mathsf{Fl}_n^{\geq 0} \to \mathsf{Fl}_n^{\geq 0}$.

• When $\mathcal{O}_{\lambda} \cong \mathrm{Fl}_n(\mathbb{C})$, the map ϑ induces a map on $\mathcal{O}_{\overline{\lambda}}^{\geq 0}$. Restricting to $\mathrm{i}\mathcal{J}_{\lambda}^{\geq 0}$, we recover the map of Bloch, Flaschka, and Ratiu on $\mathcal{J}_{\lambda}^{\geq 0}$:

$$L = g \Lambda g^{-1} \mapsto g^{-1} \Lambda g, \quad \text{ where } \Lambda := \mathsf{Diag}(\lambda_1, \dots, \lambda_n).$$

Proposition (Bloch, Karp (2021))

For $x \in \mathbb{R}^n_{>0}$, let $Vand(\lambda, x) \in Fl_n(\mathbb{C})$ be the complete flag generated by $x, \Lambda x, \ldots, \Lambda^{n-1}x$. Then the image of $i\mathcal{J}_{\lambda}^{>0} \subseteq \mathcal{O}_{\lambda}^{>0} \cong Fl_n^{>0}$ is $\vartheta(\{Vand(\lambda, x) : x \in \mathbb{R}^n_{>0}\}) \subseteq Fl_n^{>0}$.

Amplituhedra

• Let Z be a $(k+m) \times n$ matrix whose $(k+m) \times (k+m)$ minors are positive, which we regard as a linear map $Z : \mathbb{C}^n \to \mathbb{C}^{k+m}$. The *amplituhedron* $\mathcal{A}_{n,k,m}(Z)$ is the image of the induced map $\tilde{Z} : \operatorname{Gr}_{k,n}^{\geq 0} \to \operatorname{Gr}_{k,k+m}(\mathbb{C})$.

• When m = 4, $A_{n,k,m}(Z)$ encodes the tree-level scattering amplitude in planar $\mathcal{N} = 4$ supersymmetric Yang–Mills theory.

• It is expected that $A_{n,k,m}(Z)$ is homeomorphic to a closed ball. This is known for k + m = n; k = 1; m = 1; n - k - m = 1 with m even; and the family of *cyclically symmetric amplituhedra*.

Gradient flows on amplituhedra

Proposition (Bloch, Karp (2021))

Let $Z : \mathbb{C}^n \to \mathbb{C}^{k+m}$. Then $\tilde{Z} : \operatorname{Gr}_{k,n}(\mathbb{C}) \dashrightarrow \operatorname{Gr}_{k,k+m}(\mathbb{C})$ coherently projects gradient flows with respect to $N \in \mathfrak{u}_n$ if and only if ker(Z) is N-invariant.

• If the gradient flow on $\operatorname{Gr}_{k,n}(\mathbb{C})$ with respect to N strictly preserves positivity, then we obtain a contractive flow on $\mathcal{A}_{n,k,m}(Z)$.

Theorem (Bloch, Karp (2021))

Let Z be any $(k + m) \times n$ matrix whose rows form a basis for the (k + m)-dimensional subspace of the twisted Vandermonde flag

 $\vartheta(\mathsf{Vand}(\boldsymbol{\lambda}, x)) \quad (\lambda_1 > \cdots > \lambda_n, \, x \in \mathbb{R}^n_{>0}).$

Then $\mathcal{A}_{n,k,m}(Z)$ is homeomorphic to a closed ball.

• e.g.
$$\vartheta \left(\begin{bmatrix} 16 & 16 \cdot 3 & 16 \cdot 3^2 \\ 7 & 7 \cdot 2 & 7 \cdot 2^2 \\ 28 & 28 \cdot 1 & 28 \cdot 1^2 \end{bmatrix} \right) = \frac{1}{33} \begin{bmatrix} 16 & -7 & 28 \\ 28 & -4 & -17 \\ 7 & 32 & 4 \end{bmatrix} \implies Z = \frac{1}{33} \begin{bmatrix} 16 & 28 & 7 \\ -7 & -4 & 32 \end{bmatrix}.$$

• In particular, every amplituhedron with $n - k - m \le 2$ is a closed ball. Steven N. Karp (LaCIM) Gradient flows on totally nonnegative flag varieties December 9th, 2021 13 / 14

Open problems

• Can we parametrize $FI_n^{>0}$ using elementary rotation matrices? e.g.

$$\begin{aligned} \mathsf{Fl}_{3}^{>0} &= \left\{ \begin{bmatrix} 1 & 0 & 0 \\ c & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & b & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} : a, b, c > 0 \right\} \\ &= \left\{ \begin{bmatrix} \cos(\gamma) & -\sin(\gamma) & 0 \\ \sin(\gamma) & \cos(\gamma) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\beta) & -\sin(\beta) \\ 0 & \sin(\beta) & \cos(\beta) \end{bmatrix} \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix} : \dots \right\}. \end{aligned}$$

• Does the Plücker-nonnegative part of $Fl_{K;n}(\mathbb{C})$ (which differs from $Fl_{K;n}^{\geq 0}$ when K does not consist of consecutive integers) have nice properties?

• Do twisted Vandermonde amplituhedra have any other special properties?

• Can we classify gradient flows preserving amplituhedra?