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Schur–Horn theorem

Let Perm(λ1, . . . , λn) be the polytope in Rn whose vertices are all
permutations of (λ1, . . . , λn).
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Let µ send a matrix to its diagonal, e.g. µ

(
1
33

50 28 0
28 81 8
0 8 67

) = (5033 ,
81
33 ,

67
33).

Theorem (Schur (1923), Horn (1953))

The map µ sends the space of n × n symmetric matrices with eigenvalues
λ1, . . . , λn ∈ R onto Perm(λ1, . . . , λn).
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Toda lattice

The Toda lattice (1967) is a Hamiltonian system with

H(q,p) :=
1

2

n∑
i=1

p2i +
n−1∑
i=1

eqi−qi+1

(
q̇i =

∂H

∂pi
, ṗi = −

∂H

∂qi

)
.

R
q1 q2 qn· · ·
→ p1 → p2 → pn· · ·

Flaschka (1974) expressed the Toda flow in Lax form: L̇ = [L, πskew(L)],
where L is an n×n symmetric tridiagonal matrix with positive subdiagonal.

L =

b1 a1 0
a1 b2 a2
0 a2 b3

, πskew(L) =

0 −a1 0
a1 0 −a2
0 a2 0

, ai =
1
2e

qi−qi+1
2 , bi = −1

2pi .

The eigenvalues of L are distinct and are invariant under the Toda flow.
As t → ±∞, L approaches a diagonal matrix with sorted diagonal entries.

Let J >0
λ (respectively, J ≥0

λ ) denote the manifold of all L with fixed
spectrum λ = (λ1, . . . , λn) and all ai > 0 (respectively, ai ≥ 0).
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Jacobi manifold J ≥0λ

Theorem (Moser (1975))

The map which sends L ∈ J >0
λ to the vector of first entries of its

normalized eigenvectors is a homeomorphism onto Sn−1
>0 .

e.g. L = 1
33

50 28 0
28 81 8
0 8 67

 =


16
33

7
33

28
33

28
33

4
33 −17

33
7
33 −32

33
4
33


3 0 0

0 2 0

0 0 1




16
33

28
33

7
33

7
33

4
33 −32

33
28
33 −17

33
4
33


7→ (1633 ,

7
33 ,

28
33) ∈ S2

>0.

Theorem (Tomei (1984))

The space J ≥0
λ is homeomorphic to Perm(λ).

However, µ : J ≥0
λ → Perm(λ) is neither injective nor surjective.

e.g. Perm(3, 2, 1) = , µ(J ≥0
(3,2,1)) = .
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Jacobi manifold J ≥0λ

Theorem (Bloch, Flaschka, Ratiu (1990))

Let Λ denote the diagonal matrix with diagonal λ. Then the map

L = gΛg−1 7→ µ(g−1Λg) (g ∈ On)

is a homeomorphism J ≥0
λ → Perm(λ), and is a diffeomorphism on J >0

λ .

e.g. L =


16
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7
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28
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28
33

4
33 −17

33
7
33 −32

33
4
33


3 0 0

0 2 0

0 0 1




16
33

28
33

7
33

7
33

4
33 −32

33
28
33 −17

33
4
33



7→ µ

(16
33

28
33

7
33

7
33

4
33 −32

33
28
33 −17

33
4
33


3 0 0

0 2 0

0 0 1




16
33

7
33

28
33

28
33

4
33 −17

33
7
33 −32

33
4
33


)

= (795363 ,
401
363 ,

982
363).

The key to the proof is to define a map L = gΛg−1 7→ g−1Λg on J ≥0
λ ,

by making a choice of g ∈ On which depends smoothly on L ∈ J ≥0
λ . We

show that total positivity provides a natural way to make this choice and
to generalize it beyond the tridiagonal case.
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Totally nonnegative flag varieties

Let K ⊆ {1, . . . , n − 1}. The partial flag variety FlK ;n(C) consists of
tuples V = (Vk)k∈K of nested subspaces of Cn, where dim(Vk) = k .

e.g. Fl{1,3};4(C) = {(V1,V3) : V1 ⊂ V3 ⊂ C4, dim(V1) = 1, dim(V3) = 3}.
Two special cases: when K = {1, . . . , n − 1}, we obtain the complete

flag variety Fln(C); when K = {k}, we obtain the Grassmannian Grk,n(C).
We say that g ∈ GLn(C) represents V ∈ FlK ;n(C) if each Vk is the span

of the first k columns of g . We call V totally positive if it is represented
by some g whose left-justified (i.e. initial) minors are all real and positive.
We denote the set of such V by Fl>0

K ;n. We let Fl≥0
K ;n denote its closure.

e.g.


16
33

7
33

28
33

28
33

4
33 −17

33
7
33 −32

33
4
33

 =

 1 0 0
7
4 1 0
7
16

17
4 1

 ∈ Fl>0
3 .

Gr≥0
1,3

132

231312

213

123

321

Fl≥0
3
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Topology of totally nonnegative flag varieties

Theorem (Galashin, Karp, Lam (2019))

The space Fl≥0
K ;n is homeomorphic to a closed ball.

Proof

Let M be the n× n tridiagonal matrix


0 1 0 · · ·
1 0 1 · · ·
0 1 0 · · ·
...

...
...
. . .

. Then V 7→ exp(tM)V

for t ∈ [0,∞] contracts Fl≥0
K ;n onto a unique attractor in the interior.

7→
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Totally nonnegative adjoint orbits

Let Un be the group of n×n unitary matrices and un its Lie algebra of
n×n skew-Hermitian matrices. For λ1≥ · · · ≥ λn, consider the adjoint orbit

Oλ := {g(iΛ)g−1 : g ∈ Un} ⊆ un, where Λ := Diag(λ1, . . . , λn) .

Let K := {1 ≤ k ≤ n − 1 : λk > λk+1}. Then we have the isomorphism

Oλ → FlK ;n(C), g(iΛ)g−1 7→ g ,

sending a matrix to its flag of eigenvectors ordered by descending eigenvalue.

e.g. O(5,2,2,−1)
∼= Fl{1,3};4(C).

We define O>0
λ and O≥0

λ to be the preimages of Fl>0
K ;n and Fl≥0

K ;n.

e.g.


16
33

7
33

28
33

28
33

4
33 −17

33
7
33 −32

33
4
33


3i 0 0

0 2i 0

0 0 i




16
33

28
33

7
33

7
33

4
33 −32

33
28
33 −17

33
4
33

 = i
33

50 28 0
28 81 8
0 8 67

 ∈ O>0
(3,2,1).

Proposition (Bloch, Karp (2021))

If λ1 > · · · > λn, then the tridiagonal subset of O≥0
λ is precisely iJ ≥0

λ .
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Gradient flows on adjoint orbits

We consider the gradient flow on Oλ of the function L 7→ 2n tr(LN),
where N ∈ un. We work in the Kähler, normal, and induced metrics.
When Oλ

∼= Grk,n(C), all three metrics coincide up to dilation.

We say that the flow on Oλ strictly preserves positivity if trajectories
starting in O≥0

λ lie in O>0
λ for all positive time. If so, we obtain a

contractive flow with the Lyapunov function L 7→ −2n tr(LN).

Proposition (Duistermaat, Kolk, Varadarajan (1983); Guest, Ohnita (1993))

The isomorphism Oλ
∼= FlK ;n(C) sends the gradient flow with respect to

N in the Kähler metric to the flow V (t) = exp(tiN)V on FlK ;n(C).

The contractive flow on Fl≥0
K ;n considered earlier is such a flow.

Theorem (Bloch, Karp (2021))

If Oλ ≇ Grk,n(C), then the gradient flow with respect to N in the Kähler
metric strictly preserves positivity if and only if iN ∈ J >0

µ for some µ.

We obtain a slightly larger family of N’s when Oλ
∼= Grk,n(C).
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Gradient flows: normal and induced metrics

Proposition (Brockett (1991); Bloch, Brockett, Ratiu (1992))

The gradient flow on Oλ with respect to N in the normal metric is

L̇ = [L, [L,N]].

Theorem (Bloch, Karp (2021))

If Oλ
∼= Fln(C) with n ≥ 3, then every gradient flow in the normal metric

does not strictly preserve positivity.

Proposition (Bloch, Karp (2021))

The gradient flow on Oλ with respect to N in the induced metric is

L̇ = [L, ad−1
L (N)].

Proposition (Bloch, Karp (2021))

Let λ1 > λ2 > λ3 satisfy λ1−λ2
λ2−λ3

/∈ [ 1
2+2

√
2
, 2 + 2

√
2]. Then every gradient

flow in the induced metric does not strictly preserve positivity.
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Twist map

Every element of Fl≥0
n is represented by a unique g ∈ Un whose left-

justified minors are all nonnegative. Let ϑ(g) := ((−1)i+j(g−1)i ,j)1≤i ,j≤n.

e.g. ϑ

(
1
33

16 −7 28
28 −4 −17
7 32 4


)

= 1
33

16 −28 7
7 −4 −32
28 17 4

 Fln≡
16 16 · 3 16 · 32
7 7 · 2 7 · 22
28 28 · 1 28 · 12

.
Theorem (Bloch, Karp (2021))

The involution ϑ defines a diffeomorphism Fl≥0
n → Fl≥0

n .

When Oλ
∼= Fln(C), the map ϑ induces a map on O≥0

λ . Restricting to

iJ ≥0
λ , we recover the map of Bloch, Flaschka, and Ratiu on J ≥0

λ :

L = gΛg−1 7→ g−1Λg , where Λ := Diag(λ1, . . . , λn) .

Proposition (Bloch, Karp (2021))

For x ∈ Rn
>0, let Vand(λ, x) ∈ Fln(C) be the complete flag generated by

x ,Λx , . . . ,Λn−1x. Then the image of iJ >0
λ ⊆ O>0

λ
∼= Fl>0

n is

ϑ({Vand(λ, x) : x ∈ Rn
>0}) ⊆ Fl>0

n .
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Amplituhedra

Let Z be a (k+m)×n matrix whose (k+m)×(k+m) minors are positive,
which we regard as a linear map Z : Cn → Ck+m. The amplituhedron
An,k,m(Z ) is the image of the induced map Z̃ : Gr≥0

k,n → Grk,k+m(C).

Gr≥0
k,n

amplituhedron

An,k,m(Z ) ⊆ Grk,k+m(C)

linear map
Cn → Ck+mZ̃

When m = 4, An,k,m(Z ) encodes the tree-level scattering amplitude in
planar N = 4 supersymmetric Yang–Mills theory.

It is expected that An,k,m(Z ) is homeomorphic to a closed ball. This is
known for k +m = n; k = 1; m = 1; n − k −m = 1 with m even; and the
family of cyclically symmetric amplituhedra.
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Gradient flows on amplituhedra

Proposition (Bloch, Karp (2021))

Let Z :Cn→Ck+m. Then Z̃ : Grk,n(C) 99KGrk,k+m(C) coherently projects
gradient flows with respect to N ∈ un if and only if ker(Z ) is N-invariant.

If the gradient flow on Grk,n(C) with respect to N strictly preserves
positivity, then we obtain a contractive flow on An,k,m(Z ).

Theorem (Bloch, Karp (2021))

Let Z be any (k +m)× n matrix whose rows form a basis for the
(k +m)-dimensional subspace of the twisted Vandermonde flag

ϑ(Vand(λ, x)) (λ1 > · · · > λn, x ∈ Rn
>0).

Then An,k,m(Z ) is homeomorphic to a closed ball.

e.g. ϑ

(16 16 · 3 16 · 32
7 7 · 2 7 · 22
28 28 · 1 28 · 12


)

= 1
33

16 −7 28
28 −4 −17
7 32 4

 ⇝ Z = 1
33

[
16 28 7
−7 −4 32

]
.

In particular, every amplituhedron with n − k −m ≤ 2 is a closed ball.
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Open problems

Can we parametrize Fl>0
n using elementary rotation matrices? e.g.

Fl>0
3 =

{1 0 0
c 1 0
0 0 1

1 0 0
0 1 0
0 b 1

1 0 0
a 1 0
0 0 1

 : a, b, c > 0

}

=

{cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0
0 0 1

1 0 0
0 cos(β) − sin(β)
0 sin(β) cos(β)

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 : . . .

}
.

Does the Plücker-nonnegative part of FlK ;n(C) (which differs from Fl≥0
K ;n

when K does not consist of consecutive integers) have nice properties?

Do twisted Vandermonde amplituhedra have any other special
properties?

Can we classify gradient flows preserving amplituhedra?

Thank you!
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