Gradient flows on totally nonnegative flag varieties

Slides available at www-personal.umich.edu/~snkarp

Steven N. Karp (LaCIM, Université du Québec à Montréal) joint work with Anthony Bloch arXiv:2109.04558

December 9th, 2021 MFO mini-workshop

Schur-Horn theorem

- Let Perm $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be the polytope in \mathbb{R}^{n} whose vertices are all permutations of $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

Perm (3, 2, 1)

Perm(4, 3, 2, 1)

- Let μ send a matrix to its diagonal, e.g. $\mu\left(\frac{1}{33}\left[\begin{array}{ccc}50 & 28 & 0 \\ 28 & 81 & 8 \\ 0 & 8 & 67\end{array}\right]\right)=\left(\frac{50}{33}, \frac{81}{33}, \frac{67}{33}\right)$.

Theorem (Schur (1923), Horn (1953))

The map μ sends the space of $n \times n$ symmetric matrices with eigenvalues $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ onto $\operatorname{Perm}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

Toda lattice

- The Toda lattice (1967) is a Hamiltonian system with

$$
\begin{aligned}
& H(\mathbf{q}, \mathbf{p}):=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+\sum_{i=1}^{n-1} e^{q_{i}-q_{i+1}} \quad\left(\dot{q}_{i}=\frac{\partial H}{\partial p_{i}}, \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}\right) .
\end{aligned}
$$

- Flaschka (1974) expressed the Toda flow in Lax form: $\dot{L}=\left[L, \pi_{\text {skew }}(L)\right]$, where L is an $n \times n$ symmetric tridiagonal matrix with positive subdiagonal.
$L=\left[\begin{array}{ccc}b_{1} & a_{1} & 0 \\ a_{1} & b_{2} & a_{2} \\ 0 & a_{2} & b_{3}\end{array}\right], \quad \pi_{\text {skew }}(L)=\left[\begin{array}{ccc}0 & -a_{1} & 0 \\ a_{1} & 0 & -a_{2} \\ 0 & a_{2} & 0\end{array}\right], \quad a_{i}=\frac{1}{2} e^{\frac{q_{i}-q_{i+1}}{2}}, \quad b_{i}=-\frac{1}{2} p_{i}$.
- The eigenvalues of L are distinct and are invariant under the Toda flow. As $t \rightarrow \pm \infty, L$ approaches a diagonal matrix with sorted diagonal entries. - Let $\mathcal{J}_{\boldsymbol{\lambda}}^{>0}$ (respectively, $\mathcal{J}_{\lambda}^{\geq 0}$) denote the manifold of all L with fixed spectrum $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and all $a_{i}>0$ (respectively, $a_{i} \geq 0$).

Jacobi manifold $\mathcal{J}_{\lambda}^{\geq 0}$

Theorem (Moser (1975))

The map which sends $L \in \mathcal{J}_{\lambda}^{>0}$ to the vector of first entries of its normalized eigenvectors is a homeomorphism onto $S_{>0}^{n-1}$.

- e.g. $L=\frac{1}{33}\left[\begin{array}{ccc}50 & 28 & 0 \\ 28 & 81 & 8 \\ 0 & 8 & 67\end{array}\right]=\left[\begin{array}{ccc}\frac{16}{33} & \frac{7}{33} & \frac{28}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33}\end{array}\right]\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\frac{16}{33} & \frac{28}{33} & \frac{7}{33} \\ \frac{7}{33} & \frac{4}{33} & -\frac{32}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33}\end{array}\right] \quad\left(\begin{array}{ll} & \mapsto\left(\frac{16}{33}, \frac{7}{33}, \frac{28}{33}\right) \in S_{>0}^{2} .\end{array}\right.$

Theorem (Tomei (1984))

The space $\mathcal{J}_{\boldsymbol{\lambda}}^{\geq 0}$ is homeomorphic to Perm $(\boldsymbol{\lambda})$.

- However, $\mu: \mathcal{J}_{\boldsymbol{\lambda}}^{\geq 0} \rightarrow \operatorname{Perm}(\boldsymbol{\lambda})$ is neither injective nor surjective.

Jacobi manifold $\mathcal{J}_{\lambda}^{\geq 0}$

Theorem (Bloch, Flaschka, Ratiu (1990))

Let Λ denote the diagonal matrix with diagonal $\boldsymbol{\lambda}$. Then the map

$$
L=g \wedge g^{-1} \mapsto \mu\left(g^{-1} \wedge g\right) \quad\left(g \in O_{n}\right)
$$

is a homeomorphism $\mathcal{J}_{\boldsymbol{\lambda}}^{\geq 0} \rightarrow \operatorname{Perm}(\boldsymbol{\lambda})$, and is a diffeomorphism on $\mathcal{J}_{\boldsymbol{\lambda}}^{>0}$.

- e.g. $L=\left[\begin{array}{ccc}\frac{16}{33} & \frac{7}{33} & \frac{28}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33}\end{array}\right]\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\frac{16}{33} & \frac{28}{33} & \frac{7}{33} \\ \frac{7}{33} & \frac{4}{33} & -\frac{32}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33}\end{array}\right]$
$\mapsto \mu\left(\left[\begin{array}{ccc}\frac{16}{33} & \frac{28}{33} & \frac{7}{33} \\ \frac{7}{33} & \frac{4}{33} & -\frac{32}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33}\end{array}\right]\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\frac{16}{33} & \frac{7}{33} & \frac{28}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33}\end{array}\right]\right)=\left(\frac{795}{363}, \frac{401}{363}, \frac{982}{363}\right)$.
- The key to the proof is to define a map $L=g \wedge g^{-1} \mapsto g^{-1} \wedge g$ on $\mathcal{J}_{\lambda}^{\geq 0}$, by making a choice of $g \in \mathrm{O}_{n}$ which depends smoothly on $L \in \mathcal{J}_{\lambda}^{\geq 0}$. We show that total positivity provides a natural way to make this choice and to generalize it beyond the tridiagonal case.

Totally nonnegative flag varieties

- Let $K \subseteq\{1, \ldots, n-1\}$. The partial flag variety $\mathrm{FI}_{K ; n}(\mathbb{C})$ consists of tuples $V=\left(V_{k}\right)_{k \in K}$ of nested subspaces of \mathbb{C}^{n}, where $\operatorname{dim}\left(V_{k}\right)=k$.
- e.g. $\mathrm{Fl}_{\{1,3\} ; 4}(\mathbb{C})=\left\{\left(V_{1}, V_{3}\right): V_{1} \subset V_{3} \subset \mathbb{C}^{4}, \operatorname{dim}\left(V_{1}\right)=1, \operatorname{dim}\left(V_{3}\right)=3\right\}$.
- Two special cases: when $K=\{1, \ldots, n-1\}$, we obtain the complete flag variety $\mathrm{FI}_{n}(\mathbb{C})$; when $K=\{k\}$, we obtain the Grassmannian $\mathrm{Gr}_{k, n}(\mathbb{C})$. - We say that $g \in \mathrm{GL}_{n}(\mathbb{C})$ represents $V \in \mathrm{FI}_{K ; n}(\mathbb{C})$ if each V_{k} is the span of the first k columns of g. We call V totally positive if it is represented by some g whose left-justified (i.e. initial) minors are all real and positive. We denote the set of such V by $\mathrm{Fl}_{K ; n}^{>0}$. We let $\mathrm{Fl}_{\bar{K} ; n}^{\geq 0}$ denote its closure.
- e.g. $\left[\begin{array}{ccc}\frac{16}{33} & \frac{7}{33} & \frac{28}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ \frac{7}{4} & 1 & 0 \\ \frac{7}{16} & \frac{17}{4} & 1\end{array}\right] \in \mathrm{FI}_{3}^{>0}$.

Topology of totally nonnegative flag varieties

Theorem (Galashin, Karp, Lam (2019))

The space $\mathrm{Fl} \geq 0$ ㄱn is homeomorphic to a closed ball.

Proof

Let M be the $n \times n$ tridiagonal matrix $\left[\begin{array}{cccc}0 & 1 & 0 & \cdots \\ 1 & 0 & 1 & \cdots \\ 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right]$. Then $V \mapsto \exp (t M) V$ for $t \in[0, \infty]$ contracts $\mathrm{Fl}_{K ; n}^{\geq 0}$ onto a unique attractor in the interior.

Totally nonnegative adjoint orbits

- Let U_{n} be the group of $n \times n$ unitary matrices and \mathfrak{u}_{n} its Lie algebra of $n \times n$ skew-Hermitian matrices. For $\lambda_{1} \geq \cdots \geq \lambda_{n}$, consider the adjoint orbit

$$
\mathcal{O}_{\boldsymbol{\lambda}}:=\left\{g(\mathrm{i} \Lambda) g^{-1}: g \in \mathrm{U}_{n}\right\} \subseteq \mathfrak{u}_{n}, \quad \text { where } \Lambda:=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

- Let $K:=\left\{1 \leq k \leq n-1: \lambda_{k}>\lambda_{k+1}\right\}$. Then we have the isomorphism

$$
\mathcal{O}_{\lambda} \rightarrow \mathrm{FI}_{K ; n}(\mathbb{C}), \quad g(\mathrm{i} \Lambda) g^{-1} \mapsto g
$$

sending a matrix to its flag of eigenvectors ordered by descending eigenvalue.

- e.g. $\mathcal{O}_{(5,2,2,-1)} \cong \mathrm{Fl}_{\{1,3\} ; 4}(\mathbb{C})$.
- We define $\mathcal{O}_{\lambda}^{>0}$ and $\mathcal{O}_{\lambda}^{\geq 0}$ to be the preimages of $\mathrm{FI}_{K ; n}^{>0}$ and $\mathrm{FI}_{K}^{\geq 0}$.
- e.g. $\left[\begin{array}{ccc}\frac{16}{33} & \frac{7}{33} & \frac{28}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33}\end{array}\right]\left[\begin{array}{ccc}3 i & 0 & 0 \\ 0 & 2 i & 0 \\ 0 & 0 & i\end{array}\right]\left[\begin{array}{ccc}\frac{16}{33} & \frac{28}{33} & \frac{7}{33} \\ \frac{7}{33} & \frac{4}{33} & -\frac{32}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33}\end{array}\right]=\frac{i}{33}\left[\begin{array}{ccc}50 & 28 & 0 \\ 28 & 81 & 8 \\ 0 & 8 & 67\end{array}\right] \in \mathcal{O}_{(3,2,1)}^{>0}$.

Proposition (Bloch, Karp (2021))

If $\lambda_{1}>\cdots>\lambda_{n}$, then the tridiagonal subset of $\mathcal{O}_{\lambda}^{\geq 0}$ is precisely $\mathrm{i} \mathcal{J}_{\lambda}^{\geq 0}$.

Gradient flows on adjoint orbits

- We consider the gradient flow on $\mathcal{O}_{\boldsymbol{\lambda}}$ of the function $L \mapsto 2 n \operatorname{tr}(L N)$, where $N \in \mathfrak{u}_{n}$. We work in the Kähler, normal, and induced metrics. When $\mathcal{O}_{\lambda} \cong \mathrm{Gr}_{k, n}(\mathbb{C})$, all three metrics coincide up to dilation.
- We say that the flow on $\mathcal{O}_{\boldsymbol{\lambda}}$ strictly preserves positivity if trajectories starting in $\mathcal{O}_{\lambda}^{\geq 0}$ lie in $\mathcal{O}_{\lambda}^{>0}$ for all positive time. If so, we obtain a contractive flow with the Lyapunov function $L \mapsto-2 n \operatorname{tr}(L N)$.

Proposition (Duistermaat, Kolk, Varadarajan (1983); Guest, Ohnita (1993))

The isomorphism $\mathcal{O}_{\lambda} \cong \mathrm{FI}_{K ; n}(\mathbb{C})$ sends the gradient flow with respect to N in the Kähler metric to the flow $V(t)=\exp (t i N) V$ on $\mathrm{Fl}_{K ; n}(\mathbb{C})$.

- The contractive flow on $\mathrm{FI}_{\bar{K} ; n}^{\geq 0}$ considered earlier is such a flow.

Theorem (Bloch, Karp (2021))

If $\mathcal{O}_{\boldsymbol{\lambda}} \nsubseteq \mathrm{Gr}_{k, n}(\mathbb{C})$, then the gradient flow with respect to N in the Kähler metric strictly preserves positivity if and only if i $N \in \mathcal{J}_{\mu}^{>0}$ for some $\boldsymbol{\mu}$.

- We obtain a slightly larger family of N 's when $\mathcal{O}_{\boldsymbol{\lambda}} \cong \operatorname{Gr}_{k, n}(\mathbb{C})$.

Gradient flows: normal and induced metrics

Proposition (Brockett (1991); Bloch, Brockett, Ratiu (1992))

The gradient flow on $\mathcal{O}_{\boldsymbol{\lambda}}$ with respect to N in the normal metric is

$$
\dot{L}=[L,[L, N]] .
$$

Theorem (Bloch, Karp (2021))

If $\mathcal{O}_{\boldsymbol{\lambda}} \cong \mathrm{FI}_{n}(\mathbb{C})$ with $n \geq 3$, then every gradient flow in the normal metric does not strictly preserve positivity.

Proposition (Bloch, Karp (2021))

The gradient flow on $\mathcal{O}_{\boldsymbol{\lambda}}$ with respect to N in the induced metric is

$$
\dot{L}=\left[L, \operatorname{ad}_{L}^{-1}(N)\right] .
$$

Proposition (Bloch, Karp (2021))

Let $\lambda_{1}>\lambda_{2}>\lambda_{3}$ satisfy $\frac{\lambda_{1}-\lambda_{2}}{\lambda_{2}-\lambda_{3}} \notin\left[\frac{1}{2+2 \sqrt{2}}, 2+2 \sqrt{2}\right]$. Then every gradient flow in the induced metric does not strictly preserve positivity.

Twist map

- Every element of $\mathrm{FI}_{n}^{\geq 0}$ is represented by a unique $g \in U_{n}$ whose leftjustified minors are all nonnegative. Let $\vartheta(g):=\left((-1)^{i+j}\left(g^{-1}\right)_{i, j}\right)_{1 \leq i, j \leq n}$.
- e.g. $\vartheta\left(\frac{1}{33}\left[\begin{array}{ccc}16 & -7 & 28 \\ 28 & -4 & -17 \\ 7 & 32 & 4\end{array}\right]\right)=\frac{1}{33}\left[\begin{array}{ccc}16 & -28 & 7 \\ 7 & -4 & -32 \\ 28 & 17 & 4\end{array}\right] \stackrel{\mathrm{FI}_{n}}{=}\left[\begin{array}{ccc}16 & 16 \cdot 3 & 16 \cdot 3^{2} \\ 7 & 7 \cdot 2 & 7 \cdot 2^{2} \\ 28 & 28 \cdot 1 & 28 \cdot 1^{2}\end{array}\right]$

Theorem (Bloch, Karp (2021))

The involution ϑ defines a diffeomorphism $\mathrm{FI}_{n}^{\geq 0} \rightarrow \mathrm{FI}_{n}^{\geq 0}$.

- When $\mathcal{O}_{\boldsymbol{\lambda}} \cong \mathrm{FI}_{n}(\mathbb{C})$, the map ϑ induces a map on $\mathcal{O}_{\lambda}^{\geq 0}$. Restricting to $\mathrm{i} \mathcal{J}_{\lambda}^{\geq 0}$, we recover the map of Bloch, Flaschka, and Ratiu on $\mathcal{J}_{\lambda}^{\geq 0}$:

$$
L=g \wedge g^{-1} \mapsto g^{-1} \wedge g, \quad \text { where } \Lambda:=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Proposition (Bloch, Karp (2021))

For $x \in \mathbb{R}_{>0}^{n}$, let $\operatorname{Vand}(\boldsymbol{\lambda}, x) \in \mathrm{FI}_{n}(\mathbb{C})$ be the complete flag generated by $x, \wedge x, \ldots, \Lambda^{n-1} x$. Then the image of $\mathrm{i} \mathcal{J}_{\lambda}^{>0} \subseteq \mathcal{O}_{\lambda}^{>0} \cong \mathrm{Fl}_{n}^{>0}$ is $\vartheta\left(\left\{\operatorname{Vand}(\boldsymbol{\lambda}, x): x \in \mathbb{R}_{>0}^{n}\right\}\right) \subseteq \mathrm{FI}_{n}^{>0}$.

Amplituhedra

- Let Z be a $(k+m) \times n$ matrix whose $(k+m) \times(k+m)$ minors are positive, which we regard as a linear map $Z: \mathbb{C}^{n} \rightarrow \mathbb{C}^{k+m}$. The amplituhedron $\mathcal{A}_{n, k, m}(Z)$ is the image of the induced map $\tilde{Z}: \mathrm{Gr}_{k, n}^{\geq 0} \rightarrow \operatorname{Gr}_{k, k+m}(\mathbb{C})$.

$$
\begin{gathered}
\mathrm{Gr}_{k, n}^{\geq 0} \\
\tilde{Z} \\
\square \begin{array}{l}
\text { linear map } \\
\mathbb{C}^{n} \rightarrow \mathbb{C}^{k+m}
\end{array} \\
\text { amplituhedron } \\
\mathcal{A}_{n, k, m}(Z) \subseteq \mathrm{Gr}_{k, k+m}(\mathbb{C})
\end{gathered}
$$

- When $m=4, \mathcal{A}_{n, k, m}(Z)$ encodes the tree-level scattering amplitude in planar $\mathcal{N}=4$ supersymmetric Yang-Mills theory.
- It is expected that $\mathcal{A}_{n, k, m}(Z)$ is homeomorphic to a closed ball. This is known for $k+m=n ; k=1 ; m=1 ; n-k-m=1$ with m even; and the family of cyclically symmetric amplituhedra.

Gradient flows on amplituhedra

Proposition (Bloch, Karp (2021))

Let $Z: \mathbb{C}^{n} \rightarrow \mathbb{C}^{k+m}$. Then $\tilde{Z}: \mathrm{Gr}_{k, n}(\mathbb{C}) \rightarrow \mathrm{Gr}_{k, k+m}(\mathbb{C})$ coherently projects gradient flows with respect to $N \in \mathfrak{u}_{n}$ if and only if $\operatorname{ker}(Z)$ is N-invariant.

- If the gradient flow on $\mathrm{Gr}_{k, n}(\mathbb{C})$ with respect to N strictly preserves positivity, then we obtain a contractive flow on $\mathcal{A}_{n, k, m}(Z)$.

Theorem (Bloch, Karp (2021))

Let Z be any $(k+m) \times n$ matrix whose rows form a basis for the $(k+m)$-dimensional subspace of the twisted Vandermonde flag

$$
\vartheta(\operatorname{Vand}(\boldsymbol{\lambda}, x)) \quad\left(\lambda_{1}>\cdots>\lambda_{n}, x \in \mathbb{R}_{>0}^{n}\right) .
$$

Then $\mathcal{A}_{n, k, m}(Z)$ is homeomorphic to a closed ball.

- e.g. $\vartheta\left(\left[\begin{array}{ccc}16 & 16 \cdot 3 & 16 \cdot 3^{2} \\ 7 & 7 \cdot 2 & 7 \cdot 2^{2} \\ 28 & 28 \cdot 1 & 28 \cdot 1^{2}\end{array}\right]\right)=\frac{1}{33}\left[\begin{array}{ccc}16 & -7 & 28 \\ 28 & -4 & -17 \\ 7 & 32 & 4\end{array}\right] \rightsquigarrow Z=\frac{1}{33}\left[\begin{array}{ccc}16 & 28 & 7 \\ -7 & -4 & 32\end{array}\right]$.
- In particular, every amplituhedron with $n-k-m \leq 2$ is a closed ball.

Open problems

- Can we parametrize $\mathrm{FI}_{n}^{>0}$ using elementary rotation matrices? e.g.

$$
\begin{aligned}
\mathrm{Fl}_{3}^{>0} & =\left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
c & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & b & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
0 & 0 & 1
\end{array}\right]: a, b, c>0\right\} \\
& \left.=\left\{\begin{array}{ccc}
\cos (\gamma) & -\sin (\gamma) & 0 \\
\sin (\gamma) & \cos (\gamma) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\beta) & -\sin (\beta) \\
0 & \sin (\beta) & \cos (\beta)
\end{array}\right]\left[\begin{array}{ccc}
\cos (\alpha) & -\sin (\alpha) & 0 \\
\sin (\alpha) & \cos (\alpha) & 0 \\
0 & 0 & 1
\end{array}\right]: \ldots\right\} .
\end{aligned}
$$

- Does the Plücker-nonnegative part of $\mathrm{FI}_{K ; n}(\mathbb{C})$ (which differs from $\mathrm{Fl}_{K}^{\geq 0}$ when K does not consist of consecutive integers) have nice properties?
- Do twisted Vandermonde amplituhedra have any other special properties?
- Can we classify gradient flows preserving amplituhedra?

Thank you!

