Introduction to the amplituhedron

Slides available at http://lacim-membre.uqam.ca/~karp

Steven N. Karp (LaCIM, Université du Québec à Montréal)
April 8th, 2021
Amplituhedron Day

Scattering amplitudes

- A scattering amplitude is a function associated to a process of interacting particles.
- We will work in planar $\mathcal{N}=4$ supersymmetric Yang-Mills theory, and fix two parameters n and k, where n is the number of particles, $k+2$ of which have helicity - and $n-k-2$ of which have helicity + .
- Classically, scattering amplitudes are calculated as a sum over Feynman diagrams:

- For example, for $n=6$ and $k=0$, there are 220 Feynman diagrams. Yet, Parke and Taylor (1986) discovered that the scattering amplitude can be expressed as a single term.
- For general n and k, the scattering amplitude is encoded in a geometric object called the amplituhedron.

The Grassmannian $\mathrm{Gr}_{k, n}$

- The Grassmannian $\mathrm{Gr}_{k, n}$ is the set of k-dimensional subspaces of \mathbb{R}^{n}.

$$
\Delta_{12}=1, \quad \Delta_{13}=3, \quad \Delta_{14}=2, \quad \Delta_{23}=4, \quad \Delta_{24}=3, \quad \Delta_{34}=1
$$

- Given $C \in \mathrm{Gr}_{k, n}$ in the form of a $k \times n$ matrix, for k-subsets I of $\{1, \cdots, n\}$ let $\Delta_{I}(C)$ be the $k \times k$ minor of C in columns l. The Plücker coordinates $\Delta_{l}(C)$ are well defined up to a common nonzero scalar.
- We call $C \in \mathrm{Gr}_{k, n}$ totally nonnegative if $\Delta_{l}(C) \geq 0$ for all k-subsets I. The set of all such C forms the totally nonnegative Grassmannian $\mathrm{Gr}_{k, n}^{\geq 0}$.
- When $k=1$, the Grassmannian $\mathrm{Gr}_{1, n}$ specializes to projective space \mathbb{P}^{n-1}, the set of nonzero vectors $\left(x_{1}: \cdots: x_{n}\right)$ modulo rescaling.

The positroid cells of $\mathrm{Gr}_{k, n}^{\geq 0}$

- $\mathrm{Gr}_{k, n}^{\geq 0}$ has a cell decomposition due to Rietsch (alg-geom/9709035) and Postnikov (math/0609764). Each positroid cell is specified by requiring some Plücker coordinates to be strictly positive, and the rest to be zero.

- $\mathrm{Gr}_{1, n}^{\geq 0}$ is the standard $(n-1)$-dimensional simplex in \mathbb{P}^{n-1} :

$$
\left\{\left(x_{1}: \cdots: x_{n}\right) \in \mathbb{P}^{n-1}: x_{1}, \cdots, x_{n} \geq 0, x_{1}+\cdots+x_{n}=1\right\}
$$

We can view $\mathrm{Gr}_{k, n}^{\geq 0}$ as a generalization of a simplex into the Grassmannian.

Amplituhedra and Grassmann polytopes

- By definition, a polytope is the image of a simplex under an affine map:

$$
\text { simplex in } \mathbb{P}^{n-1} \quad-\cdots-\cdots, \quad C \in G r \frac{\geq-\cdots}{k, n}
$$

linear map Z:
$\mathbb{R}^{n} \rightarrow \mathbb{R}^{k+m}$
polytope in \mathbb{P}^{m}

Grassmann polytope

$$
C Z^{T} \in \mathrm{Gr}_{k, k+m}
$$

A Grassmann polytope is the image of a map $\mathrm{Gr}_{k, n}^{\geq 0} \rightarrow \mathrm{Gr}_{k, k+m}$ induced by a linear map $Z: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k+m}$. (Here $m \geq 0$ with $k+m \leq n$.)

- When the matrix Z has positive maximal minors, the Grassmann polytope is called the (tree) amplituhedron $\mathcal{A}_{n, k, m}(Z)$. Amplituhedra were introduced by Arkani-Hamed and Trnka (1312.2007), and inspired Lam (1506.00603) to define Grassmann polytopes. The case relevant to physics is $m=4$, but $\mathcal{A}_{n, k, m}(Z)$ is an interesting space for any m.

$k=1$: cyclic polytopes

- One way to construct Z with positive maximal minors is to take n points on the moment curve $\left(t, t^{2}, \cdots, t^{k+m-1}\right)$ in \mathbb{R}^{k+m-1}.
- e.g. $n=4, k+m=3$

$$
Z=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 4 & 9 & 16
\end{array}\right]
$$

- When $k=1$, the amplituhedron $\mathcal{A}_{n, 1, m}(Z)$ is the polytope in \mathbb{P}^{m} whose vertices are the columns of Z.
- e.g.

$$
\begin{array}{rr}
\left(x_{1}: x_{2}: x_{3}: x_{4}\right) & \mapsto x_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
3 \\
9
\end{array}\right]+x_{4}\left[\begin{array}{c}
1 \\
4 \\
16
\end{array}\right] \\
\in \mathbb{P}_{\geq 0}^{3}=G_{k}^{\geq 0} & \in \mathcal{A}_{4,1,2}(Z) \subseteq \mathbb{P}^{2}=\mathrm{Gr}_{k, k+m}
\end{array}
$$

- Sturmfels (1988): every amplituhedron $\mathcal{A}_{n, 1, m}(Z)$ is a cyclic polytope.

$m=1$: cyclic hyperplane arrangements

- A cyclic hyperplane arrangement consists of n hyperplanes of the form

$$
t x_{1}+t^{2} x_{2}+\cdots+t^{k} x_{k}+1=0 \text { in } \mathbb{R}^{k} \quad(t>0) .
$$

- e.g. $n=4, k=2$

$$
n=6, k=3
$$

$\mathcal{A}_{6,3,1}(Z)$

- Karp, Williams (1608.08288): $\mathcal{A}_{n, k, 1}(Z)$ is isomorphic to the complex of bounded faces of a cyclic hyperplane arrangement of n hyperplanes in \mathbb{R}^{k}.
- Karp, Williams; Arkani-Hamed, Thomas, Trnka (1704.05069):
conjectural characterizations of $\mathcal{A}_{n, k, m}(Z)$ in terms of sign variation.

Positive geometries and differential forms

- Arkani-Hamed, Bai, Lam (1703.04541): a positive geometry is a space equipped with a differential form, which has logarithmic singularities at the boundaries of the space. Examples include convex polytopes:

- $\mathrm{Gr}_{k, n}^{\geq 0}$ is a positive geometry. The differential form for e.g. $\mathrm{Gr}_{2,4}^{\geq 0}$ is

$$
\frac{d x d y d z d w}{\Delta_{12} \Delta_{23} \Delta_{34} \Delta_{14}} \text {, where } C=\left[\begin{array}{cccc}
1 & 0 & x & y \\
0 & 1 & z & w
\end{array}\right] \in \mathrm{Gr}_{2,4}
$$

- The amplituhedron $\mathcal{A}_{n, k, m}(Z)$ is conjecturally a positive geometry, whose differential form for $m=4$ is the tree-level scattering amplitude in planar $\mathcal{N}=4$ supersymmetric Yang-Mills theory.

Triangulations and duality

- Triangulation is one way to obtain the differential form of a positive geometry:

- Arkani-Hamed, Trnka: the $m=4$ amplituhedron $\mathcal{A}_{n, k, 4}(Z)$ is conjecturally triangulated by the images under Z of certain $4 k$-dimensional positroid cells of $\mathrm{Gr}_{k, n}^{\geq 0}$. These cells come from the BCFW recursion (hep-th/0412308, hep-th/0501052) for the scattering amplitude.
- The differential form of any polytope can be expressed as the volume of its dual (polar) polytope. Can we find a triangulation-independent formula for the amplituhedron form? Is it the volume of a dual amplituhedron?

$m=4:$ BCFW recursion

- The conjectured BCFW triangulation of $\mathcal{A}_{n, k, 4}(Z)$ uses $\frac{1}{n-3}\binom{n-3}{k+1}\binom{n-3}{k}$ cells. This is a Narayana number, a refinement of the Catalan number.
- Karp, Williams, Zhang, and Thomas (1708.09525): interpretations of the cells in terms of binary trees, pairs of lattice paths, and Dyck paths.

General m even: plane partitions?

- Karp, Williams, and Zhang conjecture that for m even, $\mathcal{A}_{n, k, m}(Z)$ has a triangulation into $M\left(k, n-k-m, \frac{m}{2}\right)$ cells, where

$$
M(a, b, c):=\prod_{p=1}^{a} \prod_{q=1}^{b} \prod_{r=1}^{c} \frac{p+q+r-1}{p+q+r-2}
$$

is the number of plane partitions inside an $a \times b \times c$ box.

- $M(a, b, c)$ is symmetric in (a, b, c). The $k \leftrightarrow n-k-m$ symmetry was explained by Galashin and Lam (1805.00600) using the twist map. When $m=4$, this comes from parity (symmetry of the helicities + and -) of the scattering amplitude. The possible $k \leftrightarrow \frac{m}{2}$ symmetry is mysterious.
- Mohammadi, Monin, and Parisi (2010.07254) defined the secondary amplituhedron of $\mathcal{A}_{n, k, m}(Z)$ when $n-k-m=1$.
- For any m, it is expected that $\mathcal{A}_{n, k, m}(Z)$ is a regular CW complex homeomorphic to a closed ball. This is known only in special cases.

Beyond amplituhedra

- Loop amplituhedra (1312.2007): positive geometries for scattering amplitudes in planar $\mathcal{N}=4$ supersymmetric Yang-Mills theory, for any loop order $L \geq 0$. (When $L=0$, we get $\mathcal{A}_{n, k, m}(Z)$.)
- Cosmological polytopes (1709.02813): positive geometries for the wavefunction of the universe in certain toy models.
- Associahedra (1711.09102): positive geometries for tree-level scattering amplitudes in bi-adjoint ϕ^{3} scalar theory.
- Stokes polytopes and accordiohedra (1906.02985): positive geometries for tree-level scattering amplitudes in ϕ^{p} theory.
- Momentum amplituhedra (1905.04216): positive geometries for tree-level $\mathcal{N}=4$ scattering amplitudes in spinor helicity space.
- EFThedra (2012.15849): spaces exhibiting causality and unitarity constraints for 4-particle scattering amplitudes in effective field theories.

Thank you!

