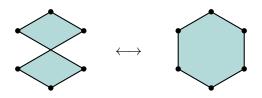
Gradient flows on totally nonnegative flag varieties

Slides available at www-personal.umich.edu/~snkarp

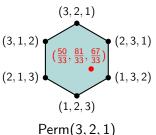


Steven N. Karp (LaCIM, Université du Québec à Montréal) joint work with Anthony Bloch arXiv:2109.04558

November 9th, 2021 Center of Mathematical Sciences and Applications

Schur-Horn theorem

• Let $\operatorname{Perm}(\lambda_1, \dots, \lambda_n)$ be the polytope in \mathbb{R}^n whose vertices are all permutations of $(\lambda_1, \dots, \lambda_n)$.



Perm(4, 3, 2, 1)

• Let μ send a matrix to its diagonal, e.g. $\mu \left(\frac{1}{33} \begin{bmatrix} 50 & 28 & 0 \\ 28 & 81 & 8 \\ 0 & 8 & 67 \end{bmatrix} \right) = \left(\frac{50}{33}, \frac{81}{33}, \frac{67}{33} \right)$.

Theorem (Schur (1923), Horn (1953))

The map μ sends the space of $n \times n$ symmetric matrices with eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ onto $\text{Perm}(\lambda_1, \ldots, \lambda_n)$.

Toda lattice

• The Toda lattice (1967) is a Hamiltonian system with

• Flaschka (1974) expressed the Toda flow in Lax form: $\dot{L} = [L, \pi_{\text{skew}}(L)]$, where L is an $n \times n$ symmetric tridiagonal matrix with positive subdiagonal.

$$L = \begin{bmatrix} b_1 & a_1 & 0 \\ a_1 & b_2 & a_2 \\ 0 & a_2 & b_3 \end{bmatrix}, \quad \pi_{\mathsf{skew}}(L) = \begin{bmatrix} 0 & -a_1 & 0 \\ a_1 & 0 & -a_2 \\ 0 & a_2 & 0 \end{bmatrix}, \quad a_i = \frac{1}{2}e^{\frac{q_i - q_{i+1}}{2}}, \quad b_i = -\frac{1}{2}p_i.$$

- The eigenvalues of L are distinct and are invariant under the Toda flow. As $t \to \pm \infty$, L approaches a diagonal matrix with sorted diagonal entries.
- Let $\mathcal{J}_{\lambda}^{>0}$ (respectively, $\mathcal{J}_{\lambda}^{\geq 0}$) denote the manifold of all L with fixed spectrum $\lambda = (\lambda_1, \dots, \lambda_n)$ and all $a_i > 0$ (respectively, $a_i \geq 0$).

Isospectral manifold $\mathcal{J}_{\lambda}^{\geq 0}$

Theorem (Moser (1975))

The map which sends $L \in \mathcal{J}_{\lambda}^{>0}$ to the vector of first entries of its normalized eigenvectors is a homeomorphism onto $S_{>0}^{n-1}$.

• e.g.
$$L = \frac{1}{33} \begin{bmatrix} 50 & 28 & 0 \\ 28 & 81 & 8 \\ 0 & 8 & 67 \end{bmatrix} = \begin{bmatrix} \frac{16}{33} & \frac{7}{33} & \frac{28}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{16}{33} & \frac{28}{33} & \frac{7}{33} \\ \frac{7}{33} & \frac{4}{33} & -\frac{32}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33} \end{bmatrix} \\ \mapsto (\frac{16}{33}, \frac{7}{33}, \frac{28}{33}) \in S_{>0}^{2}.$$

Theorem (Tomei (1984))

The space $\mathcal{J}_{\lambda}^{\geq 0}$ is homeomorphic to $Perm(\lambda)$.

• However, $\mu: \mathcal{J}_{\lambda}^{\geq 0} \to \mathsf{Perm}(\lambda)$ is neither injective nor surjective.

Isospectral manifold of Jacobi matrices

Theorem (Bloch, Flaschka, Ratiu (1990))

Let Λ denote the diagonal matrix with diagonal λ . Then the map

$$L = g \Lambda g^{-1} \mapsto \mu(g^{-1} \Lambda g) \qquad (g \in O_n)$$

is a homeomorphism $\mathcal{J}_{\lambda}^{\geq 0} o \mathsf{Perm}(\lambda)$, and is a diffeomorphism on $\mathcal{J}_{\lambda}^{> 0}$.

• e.g.
$$L = \begin{bmatrix} \frac{10}{33} & \frac{1}{33} & \frac{20}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{10}{33} & \frac{20}{33} & \frac{1}{33} \\ \frac{7}{33} & \frac{4}{33} & -\frac{32}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33} \end{bmatrix}$$

$$\mapsto \mu \begin{pmatrix} \begin{bmatrix} \frac{16}{33} & \frac{28}{33} & \frac{7}{33} \\ \frac{7}{33} & \frac{4}{33} & -\frac{32}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{16}{33} & \frac{7}{33} & \frac{28}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33} \end{bmatrix} \right) = (\frac{795}{363}, \frac{401}{363}, \frac{982}{363}).$$

• The key to the proof is to define a map $L = g\Lambda g^{-1} \mapsto g^{-1}\Lambda g$ on $\mathcal{J}_{\lambda}^{\geq 0}$, by making a choice of $g \in O_n$ which depends smoothly on $L \in \mathcal{J}_{\lambda}^{\geq 0}$. We show that total positivity provides a natural way to make this choice and to generalize it beyond the tridiagonal case.

Totally nonnegative flag varieties

- Let $K \subseteq \{1, ..., n-1\}$. The partial flag variety $\mathsf{Fl}_{K;n}(\mathbb{C})$ consists of tuples $V = (V_k)_{k \in K}$ of nested subspaces of \mathbb{C}^n , where $\dim(V_k) = k$.
- e.g. $\mathsf{Fl}_{\{1,3\};4}(\mathbb{C}) = \{(V_1,V_3): V_1 \subset V_3 \subset \mathbb{C}^4, \dim(V_1) = 1, \dim(V_3) = 3\}.$
- Two special cases: when $K = \{1, ..., n-1\}$, we obtain the *complete flag variety* $\operatorname{Fl}_n(\mathbb{C})$; when $K = \{k\}$, we obtain the *Grassmannian* $\operatorname{Gr}_{k,n}(\mathbb{C})$.
- We say that $g \in GL_n(\mathbb{C})$ represents $V \in Fl_{K;n}(\mathbb{C})$ if each V_k is the span of the first k columns of g. We call V totally positive if it is represented by some g whose left-justified (i.e. initial) minors are all real and positive. We denote the set of such V by $Fl_{K;n}^{>0}$. We similarly define $Fl_{K;n}^{\geq 0}$.

$$\bullet \text{ e.g. } \begin{bmatrix} \frac{16}{33} & \frac{7}{33} & \frac{28}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{7}{4} & 1 & 0 \\ \frac{7}{16} & \frac{17}{4} & 1 \end{bmatrix} \in \mathsf{FI}_3^{>0}.$$

 $\{I_3^{\geq 0}\}$

Topology of totally nonnegative flag varieties

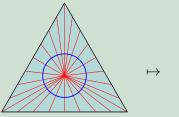
Theorem (Galashin, Karp, Lam (2019))

The space $Fl_{\kappa,n}^{\geq 0}$ is homeomorphic to a closed ball.

Proof

Let
$$M$$
 be the $n \times n$ tridiagonal matrix
$$\begin{bmatrix} 0 & 1 & 0 & \cdots \\ 1 & 0 & 1 & \cdots \\ 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$
. Then $V \mapsto \exp(tM)V$

for $t \in [0,\infty]$ contracts $\mathsf{Fl}^{\geq 0}_{K;n}$ onto a unique attractor in the interior.



Totally nonnegative adjoint orbits

• Let U_n be the group of $n \times n$ unitary matrices and \mathfrak{u}_n its Lie algebra of $n \times n$ skew-Hermitian matrices. For $\lambda_1 \ge \cdots \ge \lambda_n$, consider the adjoint orbit

$$\mathcal{O}_{\pmb{\lambda}}:=\{g(\mathrm{i}\Lambda)g^{-1}:g\in \mathsf{U}_n\}\subseteq \mathfrak{u}_n,\quad \text{ where }\Lambda:=\mathsf{Diag}(\lambda_1,\ldots,\lambda_n).$$

• Let $K:=\{1\leq k\leq n-1: \lambda_k>\lambda_{k+1}\}$. Then we have the isomorphism $\mathcal{O}_{\pmb{\lambda}} \to \mathsf{Fl}_{K\cdot n}(\mathbb{C}), \quad g(\mathrm{i}\Lambda)g^{-1}\mapsto g,$

sending a matrix to its flag of eigenvectors ordered by descending eigenvalue.

- e.g. $\mathcal{O}_{(5,2,2,-1)} \cong \mathsf{Fl}_{\{1,3\};4}(\mathbb{C}).$
- We define $\mathcal{O}_{\lambda}^{>0}$ and $\mathcal{O}_{\lambda}^{\geq 0}$ to be the preimages of $\mathsf{Fl}_{K;n}^{>0}$ and $\mathsf{Fl}_{K;n}^{\geq 0}$.

$$\bullet \text{ e.g. } \begin{bmatrix} \frac{16}{33} & \frac{7}{33} & \frac{28}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33} \end{bmatrix} \begin{bmatrix} 3i & 0 & 0 \\ 0 & 2i & 0 \\ 0 & 0 & i \end{bmatrix} \begin{bmatrix} \frac{16}{33} & \frac{28}{33} & \frac{7}{33} \\ \frac{7}{33} & \frac{4}{33} & -\frac{32}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33} \end{bmatrix} = \frac{i}{33} \begin{bmatrix} 50 & 28 & 0 \\ 28 & 81 & 8 \\ 0 & 8 & 67 \end{bmatrix} \in \mathcal{O}_{(3,2,1)}^{>0}.$$

Proposition (Bloch, Karp (2021))

If $\lambda_1 > \dots > \lambda_n$, then the tridiagonal subset of $\mathcal{O}_{\lambda}^{\geq 0}$ is precisely $i\mathcal{J}_{\lambda}^{\geq 0}$.

Gradient flows on adjoint orbits

- We consider the gradient flow on \mathcal{O}_{λ} of the function $L \mapsto 2n \operatorname{tr}(LN)$, where $N \in \mathfrak{u}_n$. We work in the Kähler, normal, and induced metrics. When $\mathcal{O}_{\lambda} \cong \operatorname{Gr}_{k,n}(\mathbb{C})$, all three metrics coincide up to dilation.
- We say that the flow on \mathcal{O}_{λ} strictly preserves positivity if trajectories starting in $\mathcal{O}_{\lambda}^{\geq 0}$ lie in $\mathcal{O}_{\lambda}^{> 0}$ for all positive time. If so, we obtain a contractive flow with the Lyapunov function $L\mapsto -2n\operatorname{tr}(LN)$.

Proposition (Duistermaat, Kolk, Varadarajan (1983); Guest, Ohnita (1993))

The isomorphism $\mathcal{O}_{\lambda} \cong \mathsf{Fl}_{K;n}(\mathbb{C})$ sends the gradient flow with respect to N in the Kähler metric to the flow $V(t) = \exp(t\mathrm{i} N)V$ on $\mathsf{Fl}_{K;n}(\mathbb{C})$.

• The contractive flow on $\mathsf{Fl}_{K,n}^{\geq 0}$ considered earlier is such a flow.

Theorem (Bloch, Karp (2021))

If $\mathcal{O}_{\lambda} \ncong \mathrm{Gr}_{k,n}(\mathbb{C})$, then the gradient flow with respect to N in the Kähler metric strictly preserves positivity if and only if $\mathrm{i}\, \mathrm{N} \in \mathcal{J}_{\mu}^{>0}$ for some μ .

• We obtain a slightly larger family of N's when $\mathcal{O}_{\lambda} \cong Gr_{k,n}(\mathbb{C})$.

Gradient flows: normal and induced metrics

Proposition (Brockett (1991); Bloch, Brockett, Ratiu (1992))

The gradient flow on \mathcal{O}_{λ} with respect to N in the normal metric is $\dot{L} = [L, [L, N]].$

Theorem (Bloch, Karp (2021))

If $\mathcal{O}_{\lambda} \cong \mathsf{Fl}_n(\mathbb{C})$ with $n \geq 3$, then every gradient flow in the normal metric does not strictly preserve positivity.

Proposition (Bloch, Karp (2021))

The gradient flow on \mathcal{O}_{λ} with respect to N in the induced metric is $\dot{L} = [L, \operatorname{ad}_{L}^{-1}(N)].$

Proposition (Bloch, Karp (2021))

Let $\lambda_1 > \lambda_2 > \lambda_3$ satisfy $\frac{\lambda_1 - \lambda_2}{\lambda_2 - \lambda_3} \notin [\frac{1}{2 + 2\sqrt{2}}, 2 + 2\sqrt{2}]$. Then every gradient flow in the induced metric does not strictly preserve positivity.

Twist map

• Every element of $\mathsf{Fl}_n^{\geq 0}$ is represented by a unique $g \in \mathsf{U}_n$ whose left-justified minors are all nonnegative. Let $\vartheta(g) := ((-1)^{i+j}(g^{-1})_{i,j})_{1 \leq i,j \leq n}$.

• e.g.
$$\vartheta \left(\frac{1}{33} \begin{bmatrix} 16 & -7 & 28 \\ 28 & -4 & -17 \\ 7 & 32 & 4 \end{bmatrix} \right) = \frac{1}{33} \begin{bmatrix} 16 & -28 & 7 \\ 7 & -4 & -32 \\ 28 & 17 & 4 \end{bmatrix} \stackrel{\mathsf{FI}_n}{=} \begin{bmatrix} 16 & 16 \cdot 3 & 16 \cdot 3^2 \\ 7 & 7 \cdot 2 & 7 \cdot 2^2 \\ 28 & 28 \cdot 1 & 28 \cdot 1^2 \end{bmatrix}.$$

Theorem (Bloch, Karp (2021))

The involution ϑ defines a diffeomorphism $\mathsf{Fl}_n^{\geq 0} \to \mathsf{Fl}_n^{\geq 0}$.

• When $\mathcal{O}_{\lambda} \cong \operatorname{Fl}_n(\mathbb{C})$, the map ϑ induces a map on $\mathcal{O}_{\lambda}^{\geq 0}$. Restricting to $i\mathcal{J}_{\lambda}^{\geq 0}$, we recover the map of Bloch, Flaschka, and Ratiu on $\mathcal{J}_{\lambda}^{\geq 0}$:

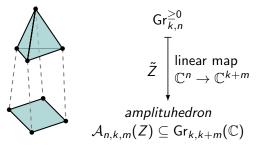
$$L = g \Lambda g^{-1} \mapsto g^{-1} \Lambda g$$
, where $\Lambda := \text{Diag}(\lambda_1, \dots, \lambda_n)$.

Proposition (Bloch, Karp (2021))

For $x \in \mathbb{R}^n_{>0}$, let $\mathsf{Vand}(\lambda, x) \in \mathsf{Fl}_n(\mathbb{C})$ be the complete flag generated by $x, \Lambda x, \dots, \Lambda^{n-1} x$. Then the image of $i\mathcal{J}_{\lambda}^{>0} \subseteq \mathcal{O}_{\lambda}^{>0} \cong \mathsf{Fl}_n^{>0}$ is $\vartheta(\{\mathsf{Vand}(\lambda, x) : x \in \mathbb{R}^n_{>0}\}) \subseteq \mathsf{Fl}_n^{>0}$.

Amplituhedra

• Let Z be a $(k+m)\times n$ matrix whose $(k+m)\times (k+m)$ minors are positive, which we regard as a linear map $Z:\mathbb{C}^n\to\mathbb{C}^{k+m}$. The amplituhedron $\mathcal{A}_{n,k,m}(Z)$ is the image of the induced map $\tilde{Z}:\operatorname{Gr}_{k,n}^{\geq 0}\to\operatorname{Gr}_{k,k+m}(\mathbb{C})$.



- When m = 4, $A_{n,k,m}(Z)$ encodes the tree-level scattering amplitude in planar $\mathcal{N} = 4$ supersymmetric Yang–Mills theory.
- It is expected that $A_{n,k,m}(Z)$ is homeomorphic to a closed ball. This is known for k+m=n; k=1; m=1; n-k-m=1 with m even; and the family of cyclically symmetric amplituhedra.

Gradient flows on amplituhedra

Proposition (Bloch, Karp (2021))

Let $Z: \mathbb{C}^n \to \mathbb{C}^{k+m}$. Then $\tilde{Z}: \operatorname{Gr}_{k,n}(\mathbb{C}) \dashrightarrow \operatorname{Gr}_{k,k+m}(\mathbb{C})$ coherently projects gradient flows with respect to $N \in \mathfrak{u}_n$ if and only if $\ker(Z)$ is N-invariant.

• If the gradient flow on $Gr_{k,n}(\mathbb{C})$ with respect to N strictly preserves positivity, then we obtain a contractive flow on $\mathcal{A}_{n,k,m}(Z)$.

Theorem (Bloch, Karp (2021))

Let Z be any $(k+m) \times n$ matrix whose rows form a basis for the (k+m)-dimensional subspace of the twisted Vandermonde flag

$$\vartheta(\mathsf{Vand}(\boldsymbol{\lambda},x)) \quad (\lambda_1 > \dots > \lambda_n, \, x \in \mathbb{R}^n_{>0}).$$

Then $A_{n,k,m}(Z)$ is homeomorphic to a closed ball.

• e.g.
$$\vartheta \left(\begin{bmatrix} 16 & 16 \cdot 3 & 16 \cdot 3^2 \\ 7 & 7 \cdot 2 & 7 \cdot 2^2 \\ 28 & 28 \cdot 1 & 28 \cdot 1^2 \end{bmatrix} \right) = \frac{1}{33} \begin{bmatrix} 16 & -7 & 28 \\ 28 & -4 & -17 \\ 7 & 32 & 4 \end{bmatrix} \implies Z = \frac{1}{33} \begin{bmatrix} 16 & 28 & 7 \\ -7 & -4 & 32 \end{bmatrix}.$$

• In particular, every amplituhedron with $n - k - m \le 2$ is a closed ball.

Future directions

- ullet Extend the setup to more general adjoint orbits beyond the case of \mathfrak{u}_n .
- Classify positivity-preserving flows in the normal and induced metrics.
- Study flows on the cell closures of the cell decomposition of $Fl_{K,n}^{\geq 0}$.
- Study the subset of $\mathcal{O}_{\lambda}^{\geq 0}$ with bounded bandwidth (the tridiagonal subset being $i\mathcal{J}_{\lambda}^{\geq 0}$).
- Classify gradient flows preserving amplituhedra (which do not necessarily come from projections).
- Do twisted Vandermonde amplituhedra have any other special properties?

Thank you!