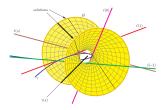
Positivity in real Schubert calculus

Slides available at snkarp.github.io



F. Sottile, "Frontiers of reality in Schubert calculus"

M. Griffon, CC BY 3.0 Deed

Steven N. Karp (University of Notre Dame)

arXiv:2309.04645 (joint with Kevin Purbhoo)

arXiv:2405.20229 (joint with Evgeny Mukhin and Vitaly Tarasov)

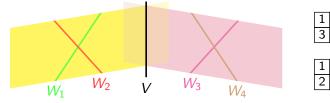
May 1, 2025 Drexel University

Schubert calculus (1886)

• Divisor Schubert problem: given subspaces $W_1,\ldots,W_{d(m-d)}\subseteq\mathbb{C}^m$ of dimension m-d, find all

d-subspaces $V \subseteq \mathbb{C}^m$ such that $V \cap W_i \neq \{0\}$ for all i.

• e.g. d=2, m=4 (projectivized). Given 4 lines $W_i\subseteq\mathbb{CP}^3$, find all lines $V\subseteq\mathbb{CP}^3$ intersecting all 4. Generically, there are 2 solutions.



We can see the 2 solutions explicitly when two pairs of the lines intersect.

- If the W_i 's are generic, the number of solutions V is f^{\square} , the number of standard Young tableaux of rectangular shape $d \times (m-d)$.
- Fulton (1984): "The question of how many solutions of real equations can be real is still very much open, particularly for enumerative problems."

The Grassmannian $Gr_{d,m}(\mathbb{C})$

ullet The Grassmannian $\mathrm{Gr}_{d,m}(\mathbb{C})$ is the set of d-dimensional subspaces of \mathbb{C}^m .

$$V := \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \end{bmatrix} \in \mathsf{Gr}_{2,4}(\mathbb{C})$$

$$= \begin{bmatrix} 1 & 1 & -1 & -1 \\ 0 & 2 & 6 & 4 \end{bmatrix}$$

$$\begin{split} \Delta_{1,2} = 1, & \ \Delta_{1,3} = 3, \ \Delta_{1,4} = 2, \ \Delta_{2,3} = 4, \ \Delta_{2,4} = 3, \ \Delta_{3,4} = 1 \end{split}$$
 Plücker relation:
$$\Delta_{1,3}\Delta_{2,4} = \Delta_{1,2}\Delta_{3,4} + \Delta_{1,4}\Delta_{2,3}$$

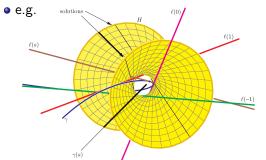
- Given $V \in \mathrm{Gr}_{d,m}(\mathbb{C})$ as a $d \times m$ matrix, for d-subsets J of $\{1,\ldots,m\}$ let $\Delta_J(V)$ be the $d \times d$ minor of V in columns J. The *Plücker coordinates* $\Delta_J(V)$ are well-defined up to a common scalar.
- $Gr_{d,m}(\mathbb{C})$ is a projective variety of dimension d(m-d).

Shapiro-Shapiro conjecture

• Do there exist Schubert problems with all real solutions?

Shapiro-Shapiro conjecture (1993)

Let $W_1, \ldots, W_{d(m-d)} \in \operatorname{Gr}_{m-d,m}(\mathbb{R})$ osculate the moment curve $\gamma(t) := (\frac{t^{m-1}}{(m-1)!}, \frac{t^{m-2}}{(m-2)!}, \ldots, t, 1)$ at real points. Then there exist f^{\square} real $V \in \operatorname{Gr}_{d,m}(\mathbb{R})$ such that $V \cap W_i \neq \{0\}$ for all i.



F. Sottile, "Frontiers of reality in Schubert calculus"

- This Schubert problem arises in the study of linear series in algebraic geometry, differential equations, and pole placement problems in control theory.
- Bürgisser–Lerario (2020): a uniformly random Schubert problem over $\mathbb R$ has $\approx \sqrt{f^{\square}}$ real solutions.

Shapiro-Shapiro conjecture and secant conjecture

- Sottile (1999) tested the conjecture and proved it asymptotically.
- Eremenko–Gabrielov (2002): cases $d \le 2$, $m d \le 2$.
- Mukhin-Tarasov-Varchenko (2009): full conjecture via the Bethe ansatz.
- Levinson-Purbhoo (2021): topological proof of the full conjecture.
- Vakil (2006): reality of Grassmannian Schubert calculus.

Secant conjecture, divisor form (Sottile (2003))

Let $W_1, \ldots, W_{d(m-d)} \in Gr_{m-d,m}(\mathbb{R})$ be secant to the moment curve $\gamma(t)$ along non-overlapping real intervals. Then there exist f^{\square}

real $V \in Gr_{d,m}(\mathbb{R})$ such that $V \cap W_i \neq \{0\}$ for all i.

• Eremenko–Gabrielov–Shapiro–Vainshtein (2006): case $m-d \le 2$.

Theorem (Karp-Purbhoo (2023))

The divisor form of the secant conjecture is true.

Total positivity

• Totally positive matrices (matrices whose minors are all positive) have been studied since the 1930's. Gantmakher–Krein (1937) showed that square totally positive matrices have positive eigenvalues.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix} \qquad \begin{array}{c} \lambda_1 = 10.6031 \cdots \\ \lambda_2 = 1.2454 \cdots \\ \lambda_3 = 0.1514 \cdots \end{array}$$

• Lusztig (1994) introduced total positivity for algebraic groups G and flag varieties G/P. An element $V \in \mathrm{Gr}_{d,m}(\mathbb{C})$ is totally nonnegative if its Plücker coordinates are all nonnegative.

$$V := \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \end{bmatrix} \in \mathsf{Gr}_{2,4}^{\geq 0}$$

$$\Delta_{1,2} = 1$$
, $\Delta_{1,3} = 3$, $\Delta_{1,4} = 2$, $\Delta_{2,3} = 4$, $\Delta_{2,4} = 3$, $\Delta_{3,4} = 1$

- Postnikov (2006) parametrized $Gr_{d,m}^{\geq 0}$ using plabic graphs.
- $\operatorname{Gr}_{d,m}^{\geq 0}$ is related to cluster algebras, electrical networks, the KP hierarchy, scattering amplitudes, curve singularities, the Ising model, knot theory, . . .

Positive Shapiro-Shapiro conjecture

Positivity conjecture (Mukhin-Tarasov (2017), Karp (2021))

Let $W_1, \ldots, W_{d(m-d)} \in Gr_{m-d,m}(\mathbb{R})$ osculate the moment curve $\gamma(t)$ at real points $t_1, \ldots, t_{d(m-d)} \geq 0$. Then there exist f^{\square}

totally nonnegative $V \in Gr_{d,m}^{\geq 0}$ such that $V \cap W_i \neq \{0\}$ for all i.

ullet e.g. d=2, m=4. If $t_3,t_4 o\infty$, then the 2 solutions $V\in \mathrm{Gr}_{2,4}(\mathbb{C})$ are

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & t_1t_2 & t_1 + t_2 & 2 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \frac{t_1+t_2}{2} & 1 & 0 & 0 \\ -t_1t_2 & 0 & 2 & 0 \end{bmatrix}.$$

• Karp (2023): the positivity conjecture is equivalent to a conjecture of Eremenko (2015), which implies the divisor form of the secant conjecture.

Theorem (Karp-Purbhoo (2023))

The positivity conjecture is true.

• To prove it, we explicitly solve for the $\Delta_J(V)$'s over $\mathbb{C}[\mathfrak{S}_{d(m-d)}]$.

Universal Plücker coordinates

• Shapiro–Shapiro problem: given $W_1,\ldots,W_{d(m-d)}\in \mathrm{Gr}_{m-d,m}(\mathbb{C})$ which osculate the moment curve $\gamma(t)$ at $t_1,\ldots,t_{d(m-d)}\in\mathbb{C}$, find all

 $V \in Gr_{d,m}(\mathbb{C})$ such that $V \cap W_i \neq \{0\}$ for all i.

Theorem (Karp-Purbhoo (2023))

There exist linear operators $\beta_J = \beta_J(t_1, \dots, t_{d(m-d)})$ indexed by d-subsets $J \subseteq \{1, \dots, m\}$ with the following properties.

- (i) The β_J 's commute and satisfy the Plücker relations.
- (ii) There is a bijection between the common eigenspaces of the β_J 's and the solutions V above, sending the eigenvalue of β_J to $\Delta_J(V)$.
- (iii) If $t_1, \ldots, t_{d(m-d)} \ge 0$, then the β_J 's are positive semidefinite.

$$\beta_J := \sum_{\substack{X \subseteq \{1,\dots,n\}, \\ |X| = |\lambda(J)|}} \left(\prod_{i \notin X} t_i\right) \sum_{\pi \in \mathfrak{S}_X} \chi^{\lambda(J)}(\pi) \pi \in \mathbb{C}[\mathfrak{S}_n] \quad (n = d(m-d))$$

Example: d=2, m=4, and $t_3, t_4 \rightarrow \infty$

$$\beta_{J} := \sum_{\substack{X \subseteq \{1, \dots, n\}, \\ |X| = |\lambda(J)|}} \left(\prod_{i \notin X} t_{i} \right) \sum_{\pi \in \mathfrak{S}_{X}} \chi^{\lambda(J)}(\pi) \pi \in \mathbb{C}[\mathfrak{S}_{n}] \quad (n = 2)$$

• Write $\mathfrak{S}_2 = \{e, \sigma\}$, where e is the identity and $\sigma = (1 \ 2)$. We have

$$\beta_{1,2} \stackrel{\varnothing}{=} t_1 t_2 e$$
, $\beta_{1,3} \stackrel{\square}{=} (t_1 + t_2) e$, $\beta_{1,4} \stackrel{\square}{=} e + \sigma$, $\beta_{2,3} \stackrel{\square}{=} e - \sigma$,

and $\beta_J = 0$ otherwise. The β_J 's commute and satisfy the Plücker relation

$$\beta_{1,3}\beta_{2,4} = \beta_{1,2}\beta_{3,4} + \beta_{1,4}\beta_{2,3} \quad \leadsto \quad 0 = 0 + (e + \sigma)(e - \sigma).$$

ullet On the eigenspace $\langle e-\sigma \rangle$, the eigenvalues are

$$\beta_{1,2} \rightsquigarrow t_1 t_2, \qquad \beta_{1,3} \rightsquigarrow t_1 + t_2, \qquad \beta_{1,4} \rightsquigarrow 0, \qquad \beta_{2,3} \rightsquigarrow 2,$$

which are the Plücker coordinates of

$$V = egin{bmatrix} rac{t_1 + t_2}{2} & 1 & 0 & 0 \ -t_1 t_2 & 0 & 2 & 0 \end{bmatrix} \in \mathsf{Gr}_{2,4}(\mathbb{C}).$$

Proof 1: KP hierarchy

- The key to the proof is showing that the β_I 's satisfy the Plücker relations.
- The KP equation models shallow waves. It is the first equation in the KP hierarchy, whose solutions are symmetric functions $\tau(\mathbf{x})$ in $\mathbf{x} = (x_1, x_2, \dots)$ satisfying *Hirota's identity*

$$[t^{-1}](B_{\mathbf{x}}(t)\tau(\mathbf{x})\cdot B_{\mathbf{y}}^{\perp}(t^{-1})\tau(\mathbf{y}))=0.$$

Here \cdot^{\perp} denotes the adjoint with respect to $\langle \cdot, \cdot \rangle$ (so $p_k(\mathbf{x})^{\perp} = k \frac{\partial}{\partial p_k(\mathbf{x})}$), and

$$B_{\mathbf{x}}(t) := H_{\mathbf{x}}(t)E_{\mathbf{x}}^{\perp}(-t^{-1}), \quad H_{\mathbf{x}}(t) := \sum_{k \geq 0} h_k(\mathbf{x})t^k, \quad E_{\mathbf{x}}(t) := \sum_{k \geq 0} e_k(\mathbf{x})t^k.$$

- Sato (1981): $\tau(\mathbf{x})$ satisfies Hirota's identity if and only if its coefficients in the Schur basis $s_{\lambda}(\mathbf{x})$ satisfy the Plücker relations.
- Karp–Purbhoo (2023): $\sum_{I} \beta_{J} s_{\lambda(J)}(\mathbf{x})$ satisfies Hirota's identity.

Proof 2: higher Gaudin Hamiltonians

ullet The higher Gaudin Hamiltonian associated to the partition λ is

$$\mathcal{T}_{\lambda} := (t_1 + \mathbf{d}_1) \cdots (t_n + \mathbf{d}_n) s_{\lambda}(h) \in \mathsf{End} ((\mathbb{C}^d)^{\otimes n}),$$

where:

- h is a $d \times d$ matrix;
- $s_{\lambda}(h)$ is the Schur polynomial evaluated at the eigenvalues of h; and
- \mathbf{d}_i is the derivative with respect to h^T acting in the *i*th tensor factor.

Theorem (Alexandrov–Leurent–Tsuboi–Zabrodin (2014))

The T_{λ} 's pairwise commute and satisfy the Plücker relations.

Theorem (Karp–Mukhin–Tarasov (2024))

- (i) We have $\beta_J = T_{\lambda(J)}|_{h=0}$.
- (ii) If $t_1, \ldots, t_n \geq 0$ and h is positive semidefinite, then so is T_{λ} .
- Part (ii) gives a positivity theorem for spaces of quasi-exponentials.

Computing with higher Gaudin Hamiltonians

• e.g. d=2, n=2. Let us verify that $T_{\square \square}|_{h=0}=\beta_{1,4}$, i.e., $\mathbf{d}_2\mathbf{d}_1s_{\square \square}(h)=e+\sigma\in\mathrm{End}\big((\mathbb{C}^2)^{\otimes 2}\big),\quad \text{where }\mathfrak{S}_2=\{e,\sigma\}.$

• Denote $h = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, so that $\mathbf{d}\phi(h) = \begin{bmatrix} \partial_a\phi & \partial_c\phi \\ \partial_b\phi & \partial_d\phi \end{bmatrix}$. We have

$$s_{\square}(h) = \frac{p_{\square}(h) + p_{\square}(h)}{2} = \frac{\operatorname{Tr}(h)^2 + \operatorname{Tr}(h^2)}{2} = a^2 + d^2 + ad + bc.$$

Then

$$\mathbf{d}_1 s_{\square \square}(h) = \begin{bmatrix} 2a+d & b \\ c & a+2d \end{bmatrix},$$

$$\mathbf{d}_{2}\mathbf{d}_{1}s_{\square}(h) = \mathbf{d}_{2}\left((2a+d)\begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix} + b\begin{bmatrix}0 & 1 \\ 0 & 0\end{bmatrix} + c\begin{bmatrix}0 & 0 \\ 1 & 0\end{bmatrix} + (a+2d)\begin{bmatrix}0 & 0 \\ 0 & 1\end{bmatrix}\right)$$

$$= \begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix} \otimes \begin{bmatrix}2 & 0 \\ 0 & 1\end{bmatrix} + \begin{bmatrix}0 & 1 \\ 0 & 0\end{bmatrix} \otimes \begin{bmatrix}0 & 0 \\ 1 & 0\end{bmatrix} + \begin{bmatrix}0 & 0 \\ 1 & 0\end{bmatrix} \otimes \begin{bmatrix}0 & 1 \\ 0 & 0\end{bmatrix} + \begin{bmatrix}0 & 0 \\ 0 & 1\end{bmatrix} \otimes \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}$$

$$= (v \otimes w \mapsto v \otimes w + w \otimes v) = e + \sigma.$$

Future directions

- Further explore the connection to the KP hierarchy.
- What happens to the higher Gaudin Hamiltonian T_{λ} if s_{λ} is replaced by a different symmetric function?
- Address generalizations and variations of the Shapiro–Shapiro conjecture: the discriminant conjecture, the general form of the secant conjecture, the monotone conjecture, the total reality conjecture for convex curves, . . .

Thank you!