Springer fibers and Richardson varieties

Steven N. Karp (University of Notre Dame) joint work with Martha Precup

April 14th, 2025 Georgia Institute of Technology

Flag variety $Fl_n(\mathbb{C})$

• The (complete) flag variety $Fl_n(\mathbb{C})$ is the set of all flags F_{\bullet} in \mathbb{C}^n :

 $F_{\bullet} = (0 = F_0 \subset F_1 \subset \cdots \subset F_{n-1} \subset F_n = \mathbb{C}^n), \quad \dim(F_j) = j \text{ for all } j.$

Equivalently, $FI_n(\mathbb{C}) = GL_n(\mathbb{C})/B_+$.

• e.g.
$$n = 3$$

 $F_{\bullet} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 1 \\ 3 & 0 & 0 \end{bmatrix} \iff F_{0} = 0, \ F_{1} = \left\langle \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} \right\rangle, \ F_{2} = \left\langle \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\rangle, \ F_{3} = \mathbb{C}^{3}$

• An $n \times n$ nilpotent matrix M a flag F_{\bullet} are compatible if

$$M(F_j) \subseteq F_{j-1} \quad \text{for all } j \ge 1.$$

• e.g. If $M := \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ then M and F_{\bullet} are compatible.

Springer fiber \mathcal{B}_{λ} (1969)

• Let λ be a *partition* of n (i.e. a weakly decreasing sequence of positive integers summing to n). Let M_{λ} be the $n \times n$ nilpotent matrix of type λ in Jordan form. Every nilpotent matrix is conjugate to a unique M_{λ} .

• e.g.
$$M_{(3)} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
, $M_{(1,1,1)} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $M_{(2,1)} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

• The Springer fiber $\mathcal{B}_{\lambda} \subseteq \mathsf{Fl}_n(\mathbb{C})$ is the set of flags compatible with M_{λ} .

• e.g.
$$\mathcal{B}_{(3)} = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\}, \quad \mathcal{B}_{(1,1,1)} = \mathsf{Fl}_3(\mathbb{C}),$$

$$\mathcal{B}_{(2,1)} = \left\{ \begin{bmatrix} a & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \right\} \sqcup \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & b & 1 \\ 0 & 1 & 0 \end{bmatrix} \right\} \sqcup \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\}$$

• The dimension of \mathcal{B}_{λ} is $\sum_{i\geq 1}(i-1)\lambda_i$.

Why study Springer fibers?

• \mathcal{B}_{λ} is a fiber in the *Springer resolution* of the nilpotent cone of $\mathfrak{sl}_n(\mathbb{C})$.

• Springer (1976): The cohomology $H^*(\mathcal{B}_{\lambda})$ is a representation of the symmetric group S_n of all permutations of $\{1, \ldots, n\}$. Moreover, $H^{\text{top}}(\mathcal{B}_{\lambda})$ is the irreducible Specht module indexed by λ .

• Springer fibers and generalizations (such as Hessenberg varieties) are related to chromatic quasisymmetric functions and Macdonald polynomials.

• The geometry of irreducible components is related to the combinatorics of Catalan numbers, webs, and standard tableaux.

• A standard (Young) tableau σ of shape λ is a filling of the diagram of λ with $1, \ldots, n$ (each used once) which is increasing along rows and columns.

• e.g.
$$\lambda = (4, 2, 2) =$$
 $\sigma =$ σ

• For $1 \le j \le n$, let $\sigma[j]$ denote the tableau formed by entries $1, \ldots, j$ of σ .

Irreducible components \mathcal{B}_{σ} of Springer fibers

• Given $F_{\bullet} \in \mathcal{B}_{\lambda}$, let $JF(F_{\bullet})$ denote the standard tableau σ such that for all j, the shape of $\sigma[j]$ is the Jordan type of M_{λ} acting on \mathbb{C}^n/F_{n-j} .

• e.g.
$$\lambda = (2, 1), \quad M_{\lambda} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad F_{\bullet} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & b & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
$$M_{\lambda} = 0 \text{ on } \mathbb{C}^{3}/F_{1} \Rightarrow \text{ shape}(\sigma[2]) = \boxed{\qquad} \Rightarrow \quad \mathsf{JF}(F_{\bullet}) = \boxed{\boxed{\frac{1}{2}}}$$

• Spaltenstein (1976): The irreducible components of \mathcal{B}_{λ} are precisely

$$\mathcal{B}_{\sigma} := \overline{\mathcal{B}_{\sigma}^{\circ}}, \quad \text{where } \mathcal{B}_{\sigma}^{\circ} := \{F_{\bullet} \in \mathcal{B}_{\lambda} : \mathsf{JF}(F_{\bullet}) = \sigma\}.$$

• e.g. $\mathcal{B}_{\underline{12}}^{\circ} = \left\{ \begin{bmatrix} a & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \right\}, \quad \mathcal{B}_{\underline{13}}^{\circ} = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & b & 1 \\ 0 & 1 & 0 \end{bmatrix} \right\} \sqcup \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\}$

Evacuation on standard tableaux

• Let $\sigma \mapsto \sigma^{\vee}$ denote *evacuation* (or the *Schützenberger involution*) on standard tableaux. We obtain σ^{\vee} from σ by repeating these steps:

- delete the box in the top-left corner;
- slide the empty box to the southeast boundary (via *jeu-de-taquin*);
- fill the empty box with the largest unused number (starting with *n*) and freeze it.

• e.g.
$$\sigma = \begin{bmatrix} 1 & 3 & 5 & 6 \\ 2 & 4 & & \\ 7 & 8 \end{bmatrix} \longrightarrow \sigma^{\vee} = \begin{bmatrix} 1 & 2 & 5 & 7 \\ 3 & 4 & \\ 6 & 8 \end{bmatrix}$$

• van Leeuwen (2000): If $F_{\bullet} \in \mathcal{B}_{\sigma}^{\circ}$, then the Jordan type of M_{λ} acting on F_j is the shape of $\sigma^{\vee}[j]$, for all j.

• We can similarly recover the *Robinson–Schensted correspondence*.

Total positivity

• *Totally positive matrices* (matrices whose minors are all positive) have been studied since the 1930's. Gantmakher–Krein (1937) showed that square totally positive matrices have positive eigenvalues.

[1	1	1	$\lambda_1 = 10.6031\cdots$
1	2	4	$\lambda_2 = 1.2454\cdots$
1	3	9	$\lambda_3 = 0.1514\cdots$

• Lusztig (1994) introduced total positivity for algebraic groups G and flag varieties G/P. It is connected to representation theory, cluster algebras, electrical networks, combinatorics, topology, Teichmüller theory, tropical and real algebraic geometry, scattering amplitudes, knot theory, ...

• The totally nonnegative flag variety $Fl_n^{\geq 0}$ is the set of flags which have a matrix representative whose left-justified minors are all nonnegative.

• e.g.
$$F_{\bullet} = \begin{bmatrix} 2 & -3 & 1 \\ 4 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \in \mathsf{Fl}_3^{\geq 0} \qquad \text{minor} = 3$$

Cell decomposition of $Fl_n^{\geq 0}$

• Lusztig (1994), Rietsch (1999): $FI_n^{\geq 0}$ has a cell decomposition

$$\mathsf{Fl}_n^{\geq 0} = \bigsqcup_{v \leq w \text{ in } S_n} R_{v,w}^{>0},$$

where $R_{v,w}^{>0}$ is the totally positive part of the *Richardson variety*

$$R_{\mathbf{v},\mathbf{w}} := \overline{B_- \mathbf{v} B_+ / B_+} \cap \overline{B_+ \mathbf{w} B_+ / B_+}.$$

Galashin−Karp−Lam (2022): Fl^{≥0} is a regular CW complex.
e.g. n = 3

Totally nonnegative Springer fiber $\mathcal{B}_{\lambda}^{\geq 0}$

• Lusztig (2020): The totally nonnegative Springer fiber is a subcomplex of $Fl_n^{\geq 0}$:

$$\mathcal{B}_{\lambda}^{\geq 0} := \mathcal{B}_{\lambda} \cap \mathsf{Fl}_{n}^{\geq 0} = \bigsqcup_{\substack{v \leq w \text{ in } S_{n}, \\ R_{v,w} \subseteq \mathcal{B}_{\lambda}}} R_{v,w}^{> 0}.$$

Its top-dimensional cells are indexed by $R_{v,w}$'s which equal some \mathcal{B}_{σ} .

Richardson envelope of \mathcal{B}_{σ}

Problem

When is the irreducible component \mathcal{B}_{σ} equal to a Richardson variety $R_{v,w}$? That is, describe the top-dimensional cells of $\mathcal{B}_{\lambda}^{\geq 0}$ in terms of tableaux.

• Additional motivation: much more is known about $R_{v,w}$ than \mathcal{B}_{σ} .

Theorem (Karp, Precup (2025+))

There exists a unique minimal Richardson variety $R_{v_{\sigma},w_{\sigma}}$ containing \mathcal{B}_{σ} .

• e.g.
$$\mathcal{B}_{\underline{1}} = \overline{\left\{ \begin{bmatrix} a & \underline{1} & 0 \\ 0 & 0 & \underline{1} \\ \underline{1} & 0 & 0 \end{bmatrix} \right\}} = \overline{\left\{ \begin{bmatrix} \underline{1} & 0 & 0 \\ 0 & 0 & \underline{1} \\ \underline{1} & \underline{1} & 0 \end{bmatrix} \right\}} = R_{\underline{132,312}}$$
$$\mathcal{B}_{\underline{1}} = \overline{\left\{ \begin{bmatrix} a & b & \underline{1} & 0 \\ 0 & a & 0 & \underline{1} \\ \underline{1} & 0 & 0 & 0 \\ 0 & \underline{1} & 0 & 0 \end{bmatrix} \right\}} = \overline{\left\{ \begin{bmatrix} \underline{1} & 0 & 0 & 0 \\ 0 & \underline{1} & 0 & 0 \\ \frac{1}{a} & -\frac{b}{a^2} & \underline{1} & 0 \\ 0 & \underline{1} & 0 & \underline{1} \end{bmatrix} \right\}} \subseteq R_{\underline{1234,3412}}$$

Reading words of σ

- We can find the Richardson envelope $R_{v_{\sigma},w_{\sigma}}$ of \mathcal{B}_{σ} as follows:
 - \mathbf{v}_{σ}^{-1} is the *top-down reading word* of σ^{\vee} ; and
 - $w_0 w_{\sigma}^{-1} w_0$ is the *reading word* of σ , where $w_0 := (j \mapsto n + 1 j) \in S_n$.

• Pagnon (2003), Pagnon–Ressayre (2006): $X_{w_{\sigma}}$ is the minimal Schubert variety containing \mathcal{B}_{σ} .

Richardson tableaux

e.g.

• A Richardson tableau is a standard tableau σ such that for all $1 \le j \le n$, if j appears in row r of σ , then either r = 1 or the largest entry of $\sigma[j-1]$ in row r-1 is greater than every entry in rows $\ge r$.

• All hook-shaped tableaux are Richardson. A two-rowed tableau is Richardson if and only if its second row has no two consecutive entries.

Theorem (Karp, Precup (2025+))

Let σ be a standard tableau of shape λ . The following are equivalent:

- (i) \mathcal{B}_{σ} is equal to some Richardson variety $R_{v,w}$;
- (ii) $\mathcal{B}_{\sigma} = R_{v_{\sigma}, w_{\sigma}}$; and
- (iii) σ is a Richardson tableau.

Slide characterization of Richardson tableaux

Theorem (Karp, Precup (2025+))

A standard tableau σ is Richardson if and only if every evacuation slide of σ (used to calculate σ^{\vee}) is L-shaped.

• Important (non-obvious) fact: if σ is Richardson, then so is σ^{\vee} .

Steven N. Karp (Notre Dame)

Springer fibers and Richardson varieties

Enumeration of Richardson tableaux of fixed shape

Theorem (Karp, Precup (2025+))

The number of Richardson tableaux of shape $\lambda = (\lambda_1, \dots, \lambda_\ell)$ is

$$\binom{\lambda_{\ell-1}}{\lambda_{\ell}}\binom{\lambda_{\ell-2}+\lambda_{\ell}}{\lambda_{\ell-1}+\lambda_{\ell}}\binom{\lambda_{\ell-3}+\lambda_{\ell-1}+\lambda_{\ell}}{\lambda_{\ell-2}+\lambda_{\ell-1}+\lambda_{\ell}}\cdots\binom{\lambda_{1}+\lambda_{3}+\lambda_{4}+\cdots+\lambda_{\ell}}{\lambda_{2}+\lambda_{3}+\lambda_{4}+\cdots+\lambda_{\ell}}.$$

• e.g. $\lambda = (3,2,1) \rightsquigarrow \binom{2}{1}\binom{3+1}{2+1} = 2 \cdot 4 = 8$

• A *q*-analogue holds using the major index on standard tableaux.

Steven N. Karp (Notre Dame)

Enumeration of Richardson tableaux of fixed size

Theorem (Karp, Precup (2025+))

The number of Richardson tableaux of size n is the Motzkin number M_n .

• e.g. n = 4, $M_4 = 9$

Singular locus and cohomology class of \mathcal{B}_σ

- There is no known general algorithm to find the singular locus of \mathcal{B}_{σ} .
- Billey–Coskun (2012) explicitly describe the singular locus of $R_{v,w}$. Thus we can calculate the singular locus of \mathcal{B}_{σ} is σ is a Richardson tableau.

Problem

For which Richardson tableaux σ is \mathcal{B}_{σ} smooth?

• In all examples of Richardson tableaux σ that we checked (including all such σ with at most two columns or at most three rows), \mathcal{B}_{σ} is smooth.

Problem

Expand the cohomology class $[\mathcal{B}_{\sigma}]$ in the Schubert basis of $H^*(Fl_n(\mathbb{C}))$.

• If σ is Richardson, this is equivalent to expanding $\mathfrak{S}_{v_{\sigma}}\mathfrak{S}_{w_{0}w_{\sigma}}$ in the basis of Schubert polynomials, which was solved by Spink–Tewari (2025+).

Thank you!