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Toda lattice

The Toda lattice (1967) is a Hamiltonian system with

H(q,p) :=
1

2

n∑
i=1

p2i +
n−1∑
i=1

eqi−qi+1

(
q̇i =

∂H

∂pi
, ṗi = −

∂H

∂qi

)
.

R
q1 q2 qn· · ·
→ p1 → p2 → pn· · ·

Flaschka (1974) expressed the Toda flow in Lax form: L̇ = [L, πskew(L)],
where L is an n×n symmetric tridiagonal matrix with positive subdiagonal.

L =

b1 a1 0
a1 b2 a2
0 a2 b3

, πskew(L) =

0 −a1 0
a1 0 −a2
0 a2 0

, ai =
1
2e

qi−qi+1
2 , bi = −1

2pi .

The eigenvalues of L are distinct and invariant under the Toda flow. As
t → ±∞, L approaches a diagonal matrix with sorted diagonal entries.

Let J >0
λ (respectively, J ≥0

λ ) denote the manifold of all L with fixed
spectrum λ = (λ1 > · · · > λn) and all ai > 0 (respectively, ai ≥ 0).
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Explicit solutions of the Toda lattice flow

Theorem (Moser (1975))

The map which sends L ∈ J >0
λ to the vector (u1, . . . , un) of first entries of

its normalized eigenvectors is a homeomorphism onto Sn−1
>0 . The Toda

lattice flow is a gradient flow on projective space Pn−1(R):
u̇i = λiui for 1 ≤ i ≤ n.

e.g. L = 1
33

50 28 0
28 81 8
0 8 67

 =


16
33

7
33

28
33

28
33

4
33 −17

33
7
33 −32

33
4
33


3 0 0

0 2 0

0 0 1




16
33

28
33

7
33

7
33

4
33 −32

33
28
33 −17

33
4
33

 ∈ J >0
(3,2,1)

7→ (u1, u2, u3) = (1633 ,
7
33 ,

28
33) ∈ S2

>0.

Theorem (Symes (1980))

The Toda lattice flow beginning at L0 has the explicit solution

L(t) = πQ(exp(tL0))
−1 · L0 · πQ(exp(tL0)),

where πQ(·) is the Q-term in the QR-factorization.
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Isospectral manifold J ≥0λ and the permutohedron

Let Perm(λ1, . . . , λn) be the polytope in Rn whose vertices are all n!
permutations of (λ1, . . . , λn), where λ1 > · · · > λn.

x

y

(1, 2)

(2, 1)

(1, 2, 3)

(1, 3, 2)

(2, 3, 1)

(3, 2, 1)

(3, 1, 2)

(2, 1, 3)

(4,1,2,3)
(4,2,1,3)

(3,2,1,4)

(3,1,2,4)

(2,1,3,4)

(1,2,3,4)

(1,2,4,3)

(1,3,2,4)

(2,1,4,3)

(2,3,1,4)

(3,1,4,2)

(4,1,3,2)

(4,2,3,1)

(3,2,4,1)

(2,4,1,3)

(1,4,2,3)

(1,3,4,2)

(2,3,4,1)

(1,4,3,2)

(2,4,3,1)

(3,4,2,1)

(4,3,2,1)

(4,3,1,2)

(3,4,1,2)

Perm(2, 1) Perm(3, 2, 1) Perm(4, 3, 2, 1)

Theorem (Tomei (1984))

The space J ≥0
λ is homeomorphic (as a stratified space) to Perm(λ).
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Moment map and Schur–Horn theorem

Let µ be the moment map sending a matrix to its diagonal.

e.g. µ

(
1
33

50 28 0
28 81 8
0 8 67

) = (5033 ,
81
33 ,

67
33) ∈ R3.

(1, 2, 3)

(1, 3, 2)

(2, 3, 1)

(3, 2, 1)

(3, 1, 2)

(2, 1, 3)

(5033 ,
81
33 ,

67
33)

Theorem (Schur (1923), Horn (1953))

The map µ sends the space of n × n symmetric matrices with eigenvalues
λ1, . . . , λn ∈ R onto Perm(λ1, . . . , λn).

However, µ : J ≥0
λ → Perm(λ) is neither injective nor surjective.

e.g. Perm(3, 2, 1) = µ(J ≥0
(3,2,1)) =
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Twisted moment map

Theorem (Bloch, Flaschka, Ratiu (1990))

Let Λ be the diagonal matrix with diagonal λ. The ‘twisted moment map’

L = gΛg−1 7→ µ(g−1Λg) (g ∈ On)

restricts to a homeomorphism J ≥0
λ

∼=−→ Perm(λ).

e.g. L =


16
33

7
33

28
33

28
33

4
33 −17

33
7
33 −32

33
4
33


3 0 0

0 2 0

0 0 1




16
33

28
33

7
33

7
33

4
33 −32

33
28
33 −17

33
4
33



7→ µ

(16
33

28
33

7
33

7
33

4
33 −32

33
28
33 −17

33
4
33


3 0 0

0 2 0

0 0 1




16
33

7
33

28
33

28
33

4
33 −17

33
7
33 −32

33
4
33


)

= (795363 ,
401
363 ,

982
363).

The proof defines a map L = gΛg−1 7→ g−1Λg on J ≥0
λ , where g ∈ On

depends smoothly on L. We use total positivity to (re-)construct this map.
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Totally nonnegative flag variety

The complete flag variety Fln(C) consists of all V = (V1, . . . ,Vn−1) with

0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Cn and dim(Vk) = k for all k.

We say g ∈ GLn(C) represents V if each Vk is spanned by the first k
columns of g . We call V totally positive (denoted V ∈ Fl>0

n ) if we can find
a g whose left-justified minors are all positive. We similarly define Fl≥0

n .

e.g.


16
33

7
33

28
33

28
33

4
33 −17

33
7
33 −32

33
4
33

 =

 1 0 0
7
4 1 0
7
16

17
4 1

 ∈ Fl>0
3 .

Lusztig (1994), Rietsch (1999): Fl≥0
n has a cell decomposition indexed

by pairs (v ,w) of permutations of n with v ≤ w in Bruhat order.

Fl≥0
2

x

y

(12, 21)

(12, 12)

(21, 21)

132

231312

213

123

321

Fl≥0
3
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Contractive flow and topology of Fl≥0n

Theorem (Galashin, Karp, Lam (2019))

The space Fl≥0
n is homeomorphic to a closed ball.

Proof

Let M be the n× n tridiagonal matrix


0 1 0 · · ·
1 0 1 · · ·
0 1 0 · · ·
...

...
...
. . .

. Then V 7→ exp(tM)V

for t ∈ [0,∞] contracts Fl≥0
n onto a unique attractor in the interior.

7→
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Totally nonnegative adjoint orbit

Let Un be the group of n×n unitary matrices and un its Lie algebra of
n×n skew-Hermitian matrices. For λ1 > · · ·>λn, consider the adjoint orbit

Oλ := {g(iΛ)g−1 : g ∈ Un} ⊆ un, where Λ := Diag(λ1, . . . , λn) .

We have the isomorphism

Oλ

∼=−→ Fln(C), g(iΛ)g−1 7→ g ,

sending a matrix to its flag of eigenvectors ordered by descending eigenvalue.

We define O>0
λ and O≥0

λ to be the preimages of Fl>0
n and Fl≥0

n .

e.g.


16
33

7
33

28
33

28
33

4
33 −17

33
7
33 −32

33
4
33


3i 0 0

0 2i 0

0 0 i




16
33

28
33

7
33

7
33

4
33 −32

33
28
33 −17

33
4
33

 = i
33

50 28 0
28 81 8
0 8 67

 ∈ O>0
(3,2,1).

Proposition (Bloch, Karp (2023))

The tridiagonal subset of O≥0
λ is precisely iJ ≥0

λ (i.e. where all off-diagonal
entries lie on the nonnegative imaginary axis).
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Gradient flows on adjoint orbits

We consider the gradient flow on Oλ of the function L 7→ 2n tr(LN),
where N ∈ un. We work in the Kähler, normal, and induced metrics.

We say that the flow on Oλ strictly preserves positivity if trajectories
starting in O≥0

λ lie in O>0
λ for all positive time. If so, we obtain a

contractive flow with the Lyapunov function L 7→ −2n tr(LN).

Proposition (Duistermaat, Kolk, Varadarajan (1983); Guest, Ohnita (1993))

The isomorphism Oλ
∼= Fln(C) sends the gradient flow with respect to N

in the Kähler metric to the flow V (t) = exp(tiN)V on Fln(C).

Theorem (Bloch, Karp (2023))

The gradient flow on Oλ with respect to N in the Kähler metric strictly
preserves positivity if and only if iN ∈ J >0

µ for some µ.

The contractive flow on Fl≥0
n shown earlier is such a flow. We also

obtain contractive flows on a new family of amplituhedra.
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Gradient flows: normal and induced metrics

Proposition (Brockett (1991); Bloch, Brockett, Ratiu (1992))

The gradient flow on Oλ with respect to N in the normal metric is

L̇ = [L, [L,N]].

Theorem (Bloch, Karp (2023))

No gradient flow on Oλ in the normal metric strictly preserves positivity.

Proposition (Bloch, Karp (2023))

The gradient flow on Oλ with respect to N in the induced metric is

L̇ = [L, ad−1
L (N)].

Proposition (Bloch, Karp (2023))

Let λ1 > λ2 > λ3 satisfy λ1−λ2
λ2−λ3

/∈ [ 1
2+2

√
2
, 2 + 2

√
2]. Then no gradient

flow on Oλ in the induced metric strictly preserves positivity.
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Twist map

Every element of Fl≥0
n is represented by a unique g ∈ Un whose left-

justified minors are all nonnegative. Let ϑ(g) :=
(
(−1)i+j(g−1)i ,j

)
1≤i ,j≤n

.

e.g. ϑ

(
1
33

16 −7 28
28 −4 −17
7 32 4

) = 1
33

16 −28 7
7 −4 −32
28 17 4

 Fln≡
16 16 · 3 16 · 32
7 7 · 2 7 · 22
28 28 · 1 28 · 12

.
Theorem (Bloch, Karp (2023))

The twist map ϑ is an involutive diffeomorphism Fl≥0
n

∼=−→ Fl≥0
n .

The map ϑ induces a map on O≥0
λ . Restricting to iJ ≥0

λ , we recover the

map of Bloch, Flaschka, and Ratiu on J ≥0
λ (i.e. L = gΛg−1 7→ g−1Λg).

Proposition (Bloch, Karp (2023))

For x ∈ Rn
>0, let Vand(λ, x) ∈ Fln(C) be the complete flag generated by

x ,Λx , . . . ,Λn−1x . Then the image of iJ >0
λ ⊆ O>0

λ
∼= Fl>0

n is

ϑ({Vand(λ, x) : x ∈ Rn
>0}) ⊆ Fl>0

n .
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Toda flow and total positivity

Recall the Toda flow on symmetric tridiagonal matrices:

L̇ = [L, πskew(L)], L ∈ J >0
λ .

Replacing L by −iL ∈ Oλ, we obtain the full symmetric Toda flow on Oλ:

L̇ = [L, πun(−iL)], L ∈ Oλ.

Bloch (1990): The tridiagonal Toda flow on Oλ is the gradient flow with
respect to N = −iDiag(n − 1, . . . , 1, 0) in the normal metric.

De Mari, Pedroni (1999): The full symmetric Toda flow on Oλ is a
gradient flow in a modification of the normal metric.

Theorem (Bloch, Karp (2023))

The full symmetric Toda flow on Oλ weakly preserves positivity. It is the
twisted gradient flow with respect to N = −iΛ in the Kähler metric.

Gekhtman and Shapiro (1997) and Kodama and Williams (2015) proved
related results for the full Kostant–Toda flow on Hessenberg matrices.
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Future directions

Find contractive flows on the cell closures of Fl≥0
n .

Generalize the connection to Toda flows to the periodic Toda lattice.

Study Toda flows projected onto permutohedra.

Thank you!
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