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Toda lattice

@ The Toda lattice (1967) is a Hamiltonian system with
n n—1
1 oH oH
H S 2 qi—9qi+1 5 =  pi=— .

— P —p2 — Pn
a1 az An

@ Flaschka (1974) expressed the Toda flow in Lax form: L= [L, Tskew(L)],
where L is an n x n symmetric tridiagonal matrix with positive subdiagonal.
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@ The eigenvalues of L are distinct and invariant under the Toda flow. As
t — £oo, L approaches a diagonal matrix with sorted diagonal entries.

o Let J>\>0 (respectively, j;o) denote the manifold of all L with fixed
spectrum XA = (A; > .-+ > \,) and all a; > 0 (respectively, a; > 0).
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Explicit solutions of the Toda lattice flow

Theorem (Moser (1975))

The map which sends L € Jfo to the vector (ui, ..., u,) of first entries of
its normalized eigenvectors is a homeomorphism onto 5251. The Toda
lattice flow is a gradient flow on projective space P"~1(R):

U= Au; forl<i<n.
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Theorem (Symes (1980))

The Toda lattice flow beginning at Lo has the explicit solution
L(t) = mq(exp(tLo)) ™" - Lo - mq(exp(tLo)),

where Tq(+) is the Q-term in the QR-factorization.
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Isospectral manifold j/\zo and the permutohedron

o Let Perm(\1, ..., A,) be the polytope in R” whose vertices are all n!
permutations of (A1,...,\,), where Ay > -+ > A,,.
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Theorem (Tomei (1984))

The space jAZO is homeomorphic (as a stratified space) to Perm(A).
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Moment map and Schur—Horn theorem

o Let p be the moment map sending a matrix to its diagonal.
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Theorem (Schur (1923), Horn (1953))

The map 1 sends the space of n X n symmetric matrices with eigenvalues
AL, ..., Ap € R onto Perm(Aq, ..., Ap).

@ However, p : JAZO — Perm() is neither injective nor surjective.

eeg Perm(3,2,1) = M(j(ioz,l)) =

5 /14
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Twisted moment map

Theorem (Bloch, Flaschka, Ratiu (1990))

Let A\ be the diagonal matrix with diagonal A. The ‘twisted moment map’
(g € On)

restricts to a homeomorphism j;o — Perm(\).

L=ghg ' = u(g'Ag)
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@ The proof defines a map L = gAg~! — g 1Ag on ‘750, where g € O,
depends smoothly on L. We use total positivity to (re-)construct this map.

Steven N. Karp (Notre Dame)

Gradient flows on totally nonnegative flag varieties

November 29, 2023 6 /14



Totally nonnegative flag variety

@ The complete flag variety Fl,(C) consists of all V = (V4,..., V,_1) with
0CWVLC  C Vo1 CC" and dim(Vy) = k for all k.

@ We say g € GL,(C) represents V if each Vj is spanned by the first k
columns of g. We call V totally positive (denoted V € FI0) if we can find
a g whose left-justified minors are all positive. We similarly define FI%O.
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o Lusztig (1994), Rietsch (1999): FI=° has a cell decomposition indexed
by pairs (v, w) of permutations of n with v < w in Bruhat order.
3% 321
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Contractive flow and topology of FI=°

Theorem (Galashin, Karp, Lam (2019))

>0
17

The space FI=" is homeomorphic to a closed ball.

Proof

Let M be the n x n tridiagonal matrix . Then V — exp(tM)V

010--

for t € [0, 00] contracts FIZ% onto a unique attractor in the interior.

" s
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Totally nonnegative adjoint orbit

o Let U, be the group of nx n unitary matrices and u, its Lie algebra of
nx n skew-Hermitian matrices. For A\; > --- > \,, consider the adjoint orbit

Ox:={g(iNg':ge€U,} Cu,, where A:= Diag(\1,...,\n).
We have the isomorphism
Ox = Fln(C),  g(iNg™" = g,
sending a matrix to its flag of eigenvectors ordered by descending eigenvalue.

o We define 030 and O5° to be the preimages of FI>° and FIZ°.
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Proposition (Bloch, Karp (2023))

The tridiagonal subset of (’);0 is precisely ij)\zo (i.e. where all off-diagonal
entries lie on the nonnegative imaginary axis).
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Gradient flows on adjoint orbits

@ We consider the gradient flow on Oy of the function L+ 2ntr(LN),
where N € u,. We work in the Kahler, normal, and induced metrics.

@ We say that the flow on Oy strictly preserves positivity if trajectories
starting in O;O lie in O;O for all positive time. If so, we obtain a
contractive flow with the Lyapunov function L — —2ntr(LN).

Proposition (Duistermaat, Kolk, Varadarajan (1983); Guest, Ohnita (1993))

The isomorphism Ox = Fl,(C) sends the gradient flow with respect to N
in the Kahler metric to the flow V(t) = exp(tiN)V on Fl,(C).

Theorem (Bloch, Karp (2023))

The gradient flow on Oy with respect to N in the Kahler metric strictly
preserves positivity if and only if iN € j,fo for some .

@ The contractive flow on FIZ° shown earlier is such a flow. We also
obtain contractive flows on a new family of amplituhedra.
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Gradient flows: normal and induced metrics

Proposition (Brockett (1991); Bloch, Brockett, Ratiu (1992))

The gradient flow on Oy with respect to N in the normal metric is
L=[L, L, N].

Theorem (Bloch, Karp (2023))

No gradient flow on Oy in the normal metric strictly preserves positivity.

Proposition (Bloch, Karp (2023))

The gradient flow on Oy with respect to N in the induced metric is
L =[Lad *(N)].

Proposition (Bloch, Karp (2023))

Let A1 > Xo > A3 satisfy i;j\i ¢ [2+;\/§, 2 +24/2]. Then no gradient

flow on Oy in the induced metric strictly preserves positivity.
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o Every element of FIZ0 is represented by a unique g € U, whose left-
justified minors are all nonnegative. Let 9(g) := ((—1)"™(g™1); )
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Theorem (Bloch, Karp (2023))

The twist map ¥ is an involutive diffeomorphism FI=° = FIZ0.

@ The map ¥ induces a map on Ofo. Restricting to ij)‘zo, we recover the
map of Bloch, Flaschka, and Ratiu on ‘,’7%0 (ie. L=gNg 1 — g tAg).

Proposition (Bloch, Karp (2023))

For x € RZ,, let Vand(\, x) € Fl,(C) be the complete flag generated by
x,Ax,...,AN""1x. Then the image of i75° C O3° = FI70 is

JI({Vand(X, x) : x € RZ,}) C FIO.

Steven N. Karp (Notre Dame) Gradient flows on totally nonnegative flag varieties November 29, 2023 12 / 14



Toda flow and total positivity

@ Recall the Toda flow on symmetric tridiagonal matrices:
[=[L maew(L)], Le TS

Replacing L by —iL € Oy, we obtain the full symmetric Toda flow on Ojy:
[ =L m,(=il)], L€ Ox.

@ Bloch (1990): The tridiagonal Toda flow on Oy is the gradient flow with
respect to N = —iDiag(n—1,...,1,0) in the normal metric.

@ De Mari, Pedroni (1999): The full symmetric Toda flow on O} is a
gradient flow in a modification of the normal metric.

Theorem (Bloch, Karp (2023))

The full symmetric Toda flow on Oy weakly preserves positivity. It is the
twisted gradient flow with respect to N = —i/ in the Kahler metric.

@ Gekhtman and Shapiro (1997) and Kodama and Williams (2015) proved
related results for the full Kostant—Toda flow on Hessenberg matrices.
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Future directions

e Find contractive flows on the cell closures of FIZ0.

@ Generalize the connection to Toda flows to the periodic Toda lattice.
@ Study Toda flows projected onto permutohedra.

Thank you!

Steven N. Karp (Notre Dame)
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