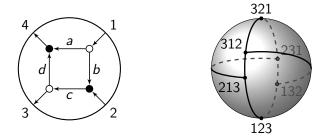
Introduction to total positivity

Slides available at snkarp.github.io



Steven N. Karp (University of Notre Dame, Institute for Advanced Study)

April 24, 2025 Institute for Advanced Study

Steven N. Karp (Notre Dame and IAS)

Introduction to total positivity

Pre-history

• Let $\operatorname{var}(v)$ denote the number of sign changes of $v \in \mathbb{R}^n$. $\operatorname{var}(0, 4, 3, 0, -1, -3, 0, 7, 5) = 2$

Theorem (Descartes (1637))

The nonzero real polynomial $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \in \mathbb{R}[x]$ has at most $var(a_0, \ldots, a_n)$ positive real zeros.

Theorem (Perron (1907), Frobenius (1912))

Let A be an $n \times n$ matrix with positive entries. Then A has a simple eigenvalue $\lambda > 0$ such that $\lambda > |\mu|$ for all other eigenvalues $\mu \in \mathbb{C}$. The eigenvector $v \in \mathbb{R}^n$ of λ has positive entries (up to rescaling).

• e.g.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \qquad \lambda = 16.12 \cdots \qquad v = \begin{bmatrix} 0.232 \cdots \\ 0.525 \cdots \\ 0.819 \cdots \end{bmatrix}$$

Totally positive kernels

• A kernel is a continuous function $K : [0,1]^2 \to \mathbb{R}$. It acts on $\mathcal{C}([0,1])$: $(Kf)(x) := \int_0^1 K(x,y)f(y)dy.$

• We call K totally positive if

$$\det \begin{bmatrix} \mathcal{K}(x_1, y_1) & \cdots & \mathcal{K}(x_1, y_n) \\ \vdots & \ddots & \vdots \\ \mathcal{K}(x_n, y_1) & \cdots & \mathcal{K}(x_n, y_n) \end{bmatrix} > 0 \qquad \qquad \begin{array}{c} \text{for all } n \ge 1, \\ 0 \le x_1 < \cdots < x_n \le 1, \\ 0 \le y_1 < \cdots < y_n \le 1. \end{array}$$

• e.g. $K(x, y) = e^{xy}$.

Theorem (Kellogg (1918), Gantmakher (1936))

Let $K : [0,1]^2 \to \mathbb{R}$ be a totally positive kernel. (i) The eigenvalues of K are positive and distinct: $\lambda_1 > \lambda_2 > \cdots > 0$. (ii) If the corresponding eigenfunctions are f_1, f_2, \ldots , then f_k has exactly k - 1 zeros on [0,1], and the zeros of f_k and f_{k+1} on [0,1] interlace.

Steven N. Karp (Notre Dame and IAS)

Totally positive matrices

• A matrix is *totally positive* if all of its minors are positive.

 $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix} \quad \begin{array}{c} \lambda_1 = 10.60 \cdots \\ \lambda_2 = 1.24 \cdots \\ \lambda_3 = 0.15 \cdots \\ \end{array} \quad v_1 = \begin{bmatrix} 0.13 \cdots \\ 0.43 \cdots \\ 0.89 \cdots \end{bmatrix} \\ v_2 = \begin{bmatrix} 0.81 \cdots \\ 0.50 \cdots \\ -0.30 \cdots \\ 0.17 \cdots \\ \end{array} \right] \\ v_3 = \begin{bmatrix} 0.66 \cdots \\ -0.73 \cdots \\ 0.17 \cdots \\ \end{array}$ $\begin{array}{c} \text{minor} = 3 \end{array}$

Theorem (Gantmakher–Krein (1937, 1950))

Let A be an $n \times n$ totally positive matrix.

(i) The eigenvalues of A are positive and distinct: $\lambda_1 > \cdots > \lambda_n > 0$. (ii) If the corresponding eigenvectors are v_1, \ldots, v_n , then $var(v_k) = k - 1$, and the sign changes of v_k and v_{k+1} interlace.

• Proof: apply the Perron–Frobenius theorem to A acting on $\bigwedge^k \mathbb{R}^n$.

• Koteljanskii (1963): For part (i), we only need the principal and almost-principal minors of A to be positive.

Work of Schoenberg

• Pólya (1912): Which linear maps $A : \mathbb{R}^m \to \mathbb{R}^n$ weakly diminish sign variation (i.e. $var(Av) \leq var(v)$ for all $v \in \mathbb{R}^m$)?

• Motivation: a discrete analogue of functions which weakly decrease the number of real zeros of a continuous function.

Theorem (Schoenberg (1930))

If A is injective, then A weakly diminishes sign variation if and only if for all $1 \le k \le m$, all nonzero $k \times k$ minors of A have the same sign.

• e.g.

$$\mathsf{A} = \begin{bmatrix} 1 & 4 & 9 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix}$$

• Motzkin (1933) solved the problem for all A.

Real-rooted polynomials

Theorem (Aissen–Schoenberg–Whitney (1952))

Let $f(x) := a_0 + a_1x + \dots + a_nx^n$ have at least one positive coefficient. Then all complex zeros of f are ≤ 0 if and only if the Toeplitz matrix

<i>M</i> :=	a ₀	a_1	a 2	· · ·]	
	0	a_0	a_1		is totally nonnegative (i.e. all its minage are >0)
	0	0	a_0		is totally nonnegative (i.e. all its minors are ≥ 0).
	L:	÷	÷	·]	is totally nonnegative (i.e. all its minors are \geq 0).

• Edrei (1952) extended the result to power series. It can be used to state the Riemann hypothesis: M is totally nonnegative when $f(x) := \xi(\sqrt{x} + \frac{1}{2})$.

• If all 2×2 minors of M are nonnegative, then (a_0, \ldots, a_n) is log-concave.

Theorem (Schoenberg (1955))

Fix $k \ge 1$. If all $k \times k$ minors of M are nonnegative, then f has no complex zeros $z \ne 0$ in the sector $|\arg(z)| < \frac{k}{n+k-1}\pi$, and this bound is tight.

Tests and parametrizations

• Adjacent positive row and column operations on $m \times n$ matrices preserve total nonnegativity. Whitney (1952) inverted these operations to test for total nonnegativity in time $O((m+n)^3)$ (also called "Neville elimination").

Corollary (Loewner (1955))

For $1 \leq i \leq n-1$, define matrices differing from the identity I_n as follows: $\begin{aligned} x_i(t) &:= \stackrel{i}{\underset{i+1}{\overset{i}{\underset{l}{1}}} \left[\begin{array}{c} 1 & t \\ 0 & 1 \end{array} \right] \quad \text{and} \quad y_i(t) &:= x_i(t)^{\mathsf{T}} = \stackrel{i}{\underset{i+1}{\overset{i}{\underset{l}{1}}} \left[\begin{array}{c} 1 & 0 \\ t & 1 \end{array} \right]. \end{aligned}$

Let (i_1, \ldots, i_ℓ) and (j_1, \ldots, j_ℓ) be reduced words for $w_0 \in \mathfrak{S}_n$, where $\ell := \binom{n}{2}$. Then every totally positive $n \times n$ matrix is uniquely expressed as

$$y_{j_{\ell}}(*)\cdots y_{j_1}(*) \begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix} x_{i_1}(*)\cdots x_{i_{\ell}}(*), \quad \text{where the } *'s \text{ are in } \mathbb{R}_{>0}.$$

	[1	0	0]	[1	0	0] [1	0	0] [*	0	0] [1	0	0]	[1	*	0]	Γ1	0	0]
• e.g. <i>n</i> = 3.	*	1	0	0	1	0	*	1	0 0	*	0 0	1	*	0	1	0	0	1	*
	0	0	1	0	*	1][0	0	1] [0	0	*] [0	0	1	0	0	1	0	0	1

Lusztig's theory of total positivity for G (1994)

• Let G be a real reductive algebraic group with simple roots I. Fix a pinning $(T, B, B_-, x_i, y_i)_{i \in I}$. Then:

- $G_{\geq 0}$ is the semigroup generated by $x_i(t)$, $y_i(t)$, and $T_{>0}$ for t > 0; and
- $G_{>0} := y_{j_{\ell}}(*) \cdots y_{j_1}(*) \cdot T_{>0} \cdot x_{i_1}(*) \cdots x_{i_{\ell}}(*)$, where the *'s are in $\mathbb{R}_{>0}$, and (i_1, \ldots, i_{ℓ}) and (j_1, \ldots, j_{ℓ}) are reduced words for the longest element w_0 of the Weyl group W.

Theorem (Lusztig (1994))

Every $g \in G_{>0}$ is conjugate to an element of $T_{>0}$.

• Proof: apply the Perron–Frobenius theorem to g acting on the irreducible G-module V_{λ} , which has positive coefficients in the *canonical basis* of V_{λ} defined by Lusztig (1990).

• Fomin–Zelevinsky (2000) characterized $G_{\geq 0}$ and $G_{>0}$ by nonnegativity and positivity, respectively, of *generalized minors*.

Fomin–Zelevinsky's cluster algebras (2000)

• Let U_n be the set of upper-triangular unipotent $n \times n$ matrices, and $U_n^{>0}$ be the subset where all minors (which are not identically zero) are positive.

• e.g.
$$U_3^{>0} = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} : a, b, \phi, ac - b > 0 \right\}$$

Theorem (Cryer (1972); Gasca–Peña (1992))

 $U_n^{>0}$ is the subset of U_n where all contiguous topmost minors are positive.

• Berenstein–Fomin–Zelevinsky's proof (1996):

(positive) exchange relation: $\Delta_2 \Delta_{1,3} = \Delta_1 \Delta_{2,3} + \Delta_{1,2} \Delta_3$

• For larger *n*, we get exchange relations not coming from braid moves. These generate positive functions on $U_n^{>0}$ called *cluster variables*.

Totally nonnegative partial flag varieties $(G/P)_{\geq 0}$

• Lusztig (1998): Given a parabolic subgroup $P \subseteq G$, define

$$(G/P)_{>0} := G_{>0}/P$$
 and $(G/P)_{\geq 0} := \overline{(G/P)_{>0}}.$

• e.g. Grassmannian $\operatorname{Gr}_{k,n}(\mathbb{C}) := \{k \text{-dimensional subspaces of } \mathbb{C}^n\}$.

$$V := \underbrace{\overrightarrow{0}}_{(0,1,3,2)} (1, 0, -4, -3) = \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \end{bmatrix} \in \mathrm{Gr}_{2,4}^{>0}$$

 $\Delta_{1,2}=1, \ \Delta_{1,3}=3, \ \Delta_{1,4}=2, \ \Delta_{2,3}=4, \ \Delta_{2,4}=3, \ \Delta_{3,4}=1$

• The *Plücker coordinates* $\Delta_I(V)$ are the $k \times k$ minors of V (modulo global rescaling), indexed by k-subsets I of $\{1, \ldots, n\}$.

• Rietsch (2009): $\operatorname{Gr}_{k,n}^{>0} = \{V \in \operatorname{Gr}_{k,n}(\mathbb{C}) : \Delta_I(V) > 0 \text{ for all } I\}$ (and similarly for $\operatorname{Gr}_{k,n}^{\geq 0}$).

Totally nonnegative Grassmannian $Gr_{k,n}^{\geq 0}$

Theorem (Gantmakher–Krein (1950))

Let $V \in Gr_{k,n}(\mathbb{R})$. (i) We have $V \in Gr_{k,n}^{\geq 0}$ if and only if $var(v) \leq k-1$ for all $v \in V$. (ii) We have $V \in Gr_{k,n}^{>0}$ if and only if $var(w) \geq k$ for all nonzero $w \in V^{\perp}$.

• We have $\{m \times n \text{ totally positive matrices}\} \cong \operatorname{Gr}_{m,m+n}^{>0}$.

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \hookrightarrow \begin{bmatrix} 1 & 0 & -d & -e & -f \\ 0 & 1 & a & b & c \end{bmatrix} \in \mathsf{Gr}_{2,5}(\mathbb{C})$$

We can regard $\operatorname{Gr}_{m,m+n}^{\geq 0}$ as a natural compactification.

Theorem (Purbhoo (2018))

If $V \in \operatorname{Gr}_{k,n}^{\geq 0}$, then the polynomial $\sum_{I} \Delta_{I}(V) \cdot \prod_{i \in I} x_{i}$ is stable (i.e. it is nonzero on \mathcal{H}^{n} , where $\mathcal{H} \subseteq \mathbb{C}$ is the upper half-plane).

Cell decomposition of $Gr_{k,n}^{\geq 0}$

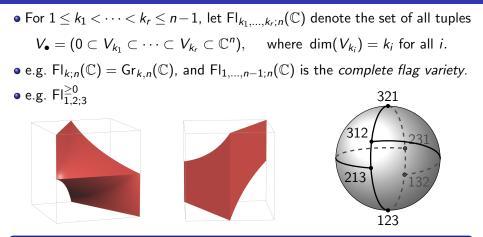
• Postnikov (2006): $\operatorname{Gr}_{k,n}^{\geq 0}$ decomposes into *positroid cells*, by specifying whether each Δ_I is zero or positive. Every cell is parametrized by a *plabic graph*.

$$\operatorname{Gr}_{2,4}^{>0} = \begin{bmatrix} 1 & 0 & -bc & -a - bcd \\ 0 & 1 & c & cd \end{bmatrix} \quad \longleftrightarrow \quad \begin{pmatrix} a & c & c \\ d & b & c \\ 3 & c & 2 \end{bmatrix}$$

• $\operatorname{Gr}_{1,n}^{\geq 0}$ is the standard simplex in \mathbb{RP}^{n-1} . Lam (2014) studied *Grassmann* polytopes, motivated by scattering amplitudes. This led to the theory of positive geometries.

$$\mathsf{Gr}_{1,3}^{\geq 0} = \mathbb{P}_{\geq 0}^2 \cong \begin{array}{c} \Delta_2, \Delta_3 = 0 \\ \Delta_3 = 0 \\ \Delta_1, \Delta_3 = 0 \\ \Delta_1 = 0 \end{array} \begin{array}{c} \Delta_2 = 0 \\ \Delta_1, \Delta_2 = 0 \\ \Delta_1 = 0 \end{array}$$

Totally nonnegative partial flag varieties of \mathbb{C}^n



Theorem (Bloch–Karp (2023))

(i) If $V_{\bullet} \in \mathsf{Fl}_{k_1,\ldots,k_r;n}^{\geq 0}$, then $\Delta_I(V_{k_i}) \geq 0$ for all *i* and all k_i -subsets *I*. (ii) The converse holds for all V_{\bullet} if and only if k_1,\ldots,k_r are consecutive.

Steven N. Karp (Notre Dame and IAS)

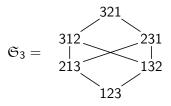
Introduction to total positivity

Total positivity and regular CW complexes

• A *regular CW complex* is a cell decomposition where every cell closure is homeomorphic to a closed ball (e.g. a polytope decomposed into its faces).

• Björner (1984): Every regular CW complex is uniquely determined by its closure poset (up to homeomorphism). Conversely, any poset which is *graded, thin,* and *shellable* is the poset of some regular CW complex.

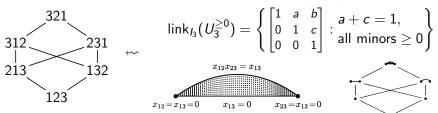
• Edelman (1981): The Bruhat order on \mathfrak{S}_n is graded, thin, and shellable.



• Björner (1984): Is there a 'natural' regular CW complex with poset \mathfrak{S}_n ?

Regular CW complexes

• Fomin–Shapiro (2000) conjectured that $link_{I_n}(U_n^{\geq 0})$ is a regular CW complex with poset \mathfrak{S}_n . This was proved by Hersh (2014) in all Lie types.



• Other (potential) examples of regular CW complexes:

- totally nonnegative part of a toric variety (Sottile (2003));
- toric cubes (Basu–Gabrielov–Vorobjov (2013));
- (*G*/*P*)_{≥0} (Galashin–Karp–Lam (2022), Bao–He (2024));
- nonnegative matroid Schubert varieties (He-Simpson-Xie (2023));
- amplituhedra and Grassmann polytopes (?);
- totally nonnegative cluster varieties (?);
- spaces of Lorentzian polynomials (?).

Thank you!