The Wronski map and real Schubert calculus

Slides available at snkarp.github.io

F. Sottile, "Frontiers of reality in Schubert calculus"

M. Griffon, CC BY 3.0 Deed

> April 24, 2025 Institute for Advanced Study

Schubert calculus (1886)

• Divisor Schubert problem: given $W_1, \ldots, W_{d(m-d)} \in \mathrm{Gr}_{m-d,m}(\mathbb{C})$,

find all $V \in Gr_{d,m}(\mathbb{C})$ such that $V \cap W_i \neq \{0\}$ for all *i*.

• e.g. d = 2, m = 4 (projectivized). Given 4 lines $W_i \subseteq \mathbb{CP}^3$, find all lines $V \subseteq \mathbb{CP}^3$ intersecting all 4. Generically, there are 2 solutions.

We can see the 2 solutions explicitly when two pairs of the lines intersect. • If the W_i 's are generic, the number of solutions V is the number of standard Young tableaux of rectangular shape $d \times (m - d)$. • Fulton (1984): "The question of how many solutions of real equations can be real is still very much open, particularly for enumerative problems."

Shapiro-Shapiro conjecture

• Do there exist Schubert problems with all real solutions?

Shapiro-Shapiro conjecture (1993)

Let $W_1, \ldots, W_{d(m-d)} \in \operatorname{Gr}_{m-d,m}(\mathbb{R})$ osculate the moment curve $\gamma(t) := (\frac{t^{m-1}}{(m-1)!}, \frac{t^{m-2}}{(m-2)!}, \ldots, t, 1)$ at real points. Then there exist f^{\square} real $V \in \operatorname{Gr}_{d,m}(\mathbb{R})$ such that $V \cap W_i \neq \{0\}$ for all i.

F. Sottile, "Frontiers of reality in Schubert calculus"

- This Schubert problem arises in the study of linear series in algebraic geometry, differential equations, and pole placement problems in control theory.
- Bürgisser, Lerario (2020): a uniformly random Schubert problem over \mathbb{R} has $\approx \sqrt{f^{\square}}$ real solutions.

Shapiro-Shapiro conjecture and secant conjecture

- Sottile (1999) tested the conjecture and proved it asymptotically.
- Eremenko–Gabrielov (2002): cases $d \le 2$, $m d \le 2$.
- Mukhin-Tarasov-Varchenko (2009): full conjecture via the Bethe ansatz.
- Levinson-Purbhoo (2021): topological proof of the full conjecture.
- Vakil (2006): reality of Grassmannian Schubert calculus.

Secant conjecture, divisor form (Sottile (2003))

Let $W_1, \ldots, W_{d(m-d)} \in Gr_{m-d,m}(\mathbb{R})$ be secant to the moment curve $\gamma(t)$ along non-overlapping real intervals. Then

there exist f^{\square} real $V \in Gr_{d,m}(\mathbb{R})$ such that $V \cap W_i \neq \{0\}$ for all *i*.

• Eremenko–Gabrielov–Shapiro–Vainshtein (2006): case $m - d \leq 2$.

Theorem (Karp–Purbhoo (2023))

The divisor form of the secant conjecture is true.

Steven N. Karp (Notre Dame and IAS)

The Wronski map and real Schubert calculus

April 24, 2025 4 / 13

The Wronskian

• The Wronskian of d functions $f_1, \ldots, f_d : \mathbb{C} \to \mathbb{C}$ is

$$\mathsf{Wr}(f_1,\ldots,f_d) := \det \begin{bmatrix} f_1 & \cdots & f_d \\ f'_1 & \cdots & f'_d \\ \vdots & \ddots & \vdots \\ f_1^{(d-1)} & \cdots & f_d^{(d-1)} \end{bmatrix}.$$

• e.g.
$$\operatorname{Wr}(f,g) = \det \begin{bmatrix} f & g \\ f' & g' \end{bmatrix} = fg' - f'g = f^2(\frac{g}{f})'.$$

• Wr $(f_1, \ldots, f_d) \not\equiv 0$ if and only if f_1, \ldots, f_d are linearly independent. Then Wr(V) is well-defined up to a scalar, where $V := \langle f_1, \ldots, f_d \rangle$.

• The zeros of Wr(V) are points in \mathbb{C} where some nonzero $f \in V$ has a zero of order $\geq d$.

• The monic linear differential operator $\mathcal L$ of order d with kernel V is

$$\mathcal{L}(g) = \frac{\mathsf{Wr}(f_1, \dots, f_d, g)}{\mathsf{Wr}(f_1, \dots, f_d)} = g^{(d)} + \cdots$$

Wronskian formulation of Shapiro-Shapiro conjecture

• We identify \mathbb{C}^m with the space of polynomials of degree at most m-1:

 $\mathbb{C}^m \leftrightarrow \mathbb{C}_{m-1}[u], \quad (a_1, \ldots, a_m) \leftrightarrow a_1 + a_2 u + a_3 \frac{u^2}{2} + \cdots + a_m \frac{u^{m-1}}{(m-1)!}.$

We obtain the Wronski morphism $Wr : Gr_{d,m}(\mathbb{C}) \to \mathbb{P}(\mathbb{C}_{d(m-d)}[u]).$

Lemma

Let $V \in Gr_{d,m}(\mathbb{C})$ and $z \in \mathbb{C}$. Then Wr(V) is zero at -z if and only if V nontrivially intersects the codimension-d osculating subspace to γ at z.

Shapiro–Shapiro conjecture (Mukhin–Tarasov–Varchenko (2009))

Let $V \in Gr_{d,m}(\mathbb{C})$. If all complex zeros of Wr(V) are real, then V is real.

• e.g. If $Wr(V) := (u + z_1)(u + z_2)$, the two solutions $V \in \mathsf{Gr}_{2,4}(\mathbb{C})$ are

$$\big\langle 1, z_1z_2u+\tfrac{(z_1+z_2)u^2}{2}+\tfrac{u^3}{3}\big\rangle \quad \text{ and } \quad \big\langle (u+z_1)^2, (u+z_2)^2\big\rangle.$$

Disconjugacy and positivity conjectures

Disconjugacy conjecture (Eremenko (2015))

Let $V \in Gr_{d,m}(\mathbb{R})$ be such that all complex zeros of Wr(V) are real, and let $K \subseteq \mathbb{R}$ be an interval avoiding the zeros of Wr(V). Then every nonzero real $f \in V$ has at most d - 1 zeros in K.

• Eremenko (2015): this implies the divisor form of the secant conjecture.

Positivity conjecture (Mukhin–Tarasov (2017), Karp (2021))

Let $V \in Gr_{d,m}(\mathbb{C})$. If all complex zeros of Wr(V) are ≤ 0 , then $V \in Gr_{d,m}^{\geq 0}$.

• Karp (2023): this is equivalent to the disconjugacy conjecture. Proof of the forward direction: by an action of $SL_2(\mathbb{R})$, we can assume $K = (0, \infty)$. If the zeros of Wr(V) are real and avoid K, then the positivity conjecture implies $V \in Gr_{d,m}^{\geq 0}$. By the Gantmakher–Krein theorem, every $f \in V$ has $\leq d-1$ sign changes, so it has $\leq d-1$ zeros in $(0,\infty)$ by Descartes's rule. • Karp–Purbhoo (2023): The positivity conjecture is true.

Universal Plücker coordinates for the Wronski map

• We index Plücker coordinates by partitions inside a $d \times (m-d)$ rectangle.

$$\leftrightarrow \ I_{\lambda} = \{2,4,5\}$$

Theorem (Karp–Purbhoo (2023))

Let $z_1, \ldots, z_n \in \mathbb{C}$. There exist linear operators $\beta_{\lambda}(z_1, \ldots, z_n)$ such that: (i) The β_{λ} 's commute and satisfy the Plücker relations.

(ii) The common eigenspaces E of the β_{λ} 's correspond to $V \in Gr_{d,m}(\mathbb{C})$ with $Wr(V) = (u + z_1) \cdots (u + z_n)$, via $\beta_{\lambda}|_E \mapsto \Delta_{I_{\lambda}}(V)$.

(iii) If $z_1, \ldots, z_n \ge 0$, then the β_{λ} 's are positive semidefinite.

$$\beta_{\lambda} := \sum_{\substack{X \subseteq \{1, \dots, n\}, \\ |X| = |\lambda|}} \left(\prod_{i \notin X} z_i\right) \sum_{\pi \in \mathfrak{S}_X} \chi^{\lambda}(\pi) \pi \in \mathbb{C}[\mathfrak{S}_n]$$

Example: d = 2, m = 4, n = 2

$$\beta_{\lambda} := \sum_{\substack{X \subseteq \{1, \dots, n\}, \\ |X| = |\lambda|}} \left(\prod_{i \notin X} z_i \right) \sum_{\pi \in \mathfrak{S}_X} \chi^{\lambda}(\pi) \pi \in \mathbb{C}[\mathfrak{S}_n]$$

• Write $\mathfrak{S}_2 = \{e, \sigma\}$, where *e* is the identity and $\sigma = (1 \ 2)$. We have

$$\beta_{\varnothing} = z_1 z_2 e, \quad \beta_{\Box} = (z_1 + z_2) e, \quad \beta_{\Box\Box} = e + \sigma, \quad \beta_{\Box} = e - \sigma,$$

and $\beta_{\lambda} = 0$ if $|\lambda| > 2$. The Plücker relation is $\beta_{\Box}\beta_{\Box} = \beta_{\varnothing}\beta_{\Box} + \beta_{\Box}\beta_{\Box}$.

- On the sign eigenspace $E = M^{\square}$, the eigenvalues are
 - $\beta_{\varnothing} \rightsquigarrow z_1 z_2, \qquad \beta_{\Box} \rightsquigarrow z_1 + z_2, \qquad \beta_{\Box\Box} \rightsquigarrow 0, \qquad \beta_{\Box} \rightsquigarrow 2.$

These are the Plücker coordinates of

$$V = \begin{bmatrix} \frac{z_1+z_2}{2} & 1 & 0 & 0 \\ -z_1z_2 & 0 & 2 & 0 \end{bmatrix} = \left\langle \frac{z_1+z_2}{2} + u, -z_1z_2 + u^2 \right\rangle \in X^{\square} \subseteq \operatorname{Gr}_{2,4}(\mathbb{C}).$$

We can check that $Wr(V) = (u + z_1)(u + z_2)$.

Proof 1: KP hierarchy

• The key to the proof is showing that the β_{λ} 's satisfy the Plücker relations.

• The KP equation models shallow waves. It is the first equation in the KP hierarchy, whose solutions are symmetric functions $\tau(\mathbf{x})$ in $\mathbf{x} = (x_1, x_2, ...)$ satisfying Hirota's identity

M. Griffon, CC BY 3.0 Deed

$$[t^{-1}] ig(B_{\mathbf{x}}(t) au(\mathbf{x}) \cdot B_{\mathbf{y}}^{\perp}(t^{-1}) au(\mathbf{y}) ig) = 0.$$

Here \cdot^{\perp} denotes the adjoint with respect to $\langle \cdot, \cdot \rangle$ (so $p_k(\mathbf{x})^{\perp} = k \frac{\partial}{\partial p_k(\mathbf{x})}$), and

$$B_{\mathbf{x}}(t) := H_{\mathbf{x}}(t)E_{\mathbf{x}}^{\perp}(-t^{-1}), \quad H_{\mathbf{x}}(t) := \sum_{k \geq 0} h_k(\mathbf{x})t^k, \quad E_{\mathbf{x}}(t) := \sum_{k \geq 0} e_k(\mathbf{x})t^k.$$

• Sato (1981): $\tau(\mathbf{x})$ satisfies Hirota's identity if and only if its coefficients in the Schur basis $s_{\lambda}(\mathbf{x})$ satisfy the Plücker relations.

• Karp–Purbhoo (2023): $\sum_{\lambda} \beta_{\lambda} s_{\lambda}(\mathbf{x})$ satisfies Hirota's identity.

Proof 2: higher Gaudin Hamiltonians

Define

$$\mathcal{T}_{\lambda} := (z_1 + \mathbf{d}_1) \cdots (z_n + \mathbf{d}_n) s_{\lambda}(h) \in \operatorname{End}((\mathbb{C}^d)^{\otimes n}),$$

where:

- *h* is a *d* × *d* matrix;
- $s_{\lambda}(h)$ is the Schur polynomial evaluated at the eigenvalues of h; and
- \mathbf{d}_i is the derivative with respect to h^{T} acting in the *i*th tensor factor.

Theorem (Alexandrov-Leurent-Tsuboi-Zabrodin (2014))

The T_{λ} 's pairwise commute and satisfy the Plücker relations.

Theorem (Karp–Mukhin–Tarasov (2024))

(i) We have $T_{\lambda}|_{h=0} = \beta_{\lambda}$.

(ii) If $z_1, \ldots, z_n \ge 0$ and h is positive semidefinite, then so is T_{λ} .

• Part (ii) gives a positivity theorem for spaces $\langle e^{h_1 u} f_1(u), \ldots, e^{h_d u} f_d(u) \rangle$, where h_1, \ldots, h_d are the eigenvalues of h and the f_i 's are polynomials.

Steven N. Karp (Notre Dame and IAS)

Computing with higher Gaudin Hamiltonians

• e.g.
$$d = 2$$
, $n = 2$. Let us verify that $T_{\Box\Box}|_{h=0} = \beta_{\Box\Box}$, i.e.,
 $\mathbf{d}_2 \mathbf{d}_1 s_{\Box\Box}(h) = e + \sigma \in \operatorname{End}((\mathbb{C}^2)^{\otimes 2}), \quad \text{where } \mathfrak{S}_2 = \{e, \sigma\}.$
• Denote $h = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, so that $\mathbf{d}\phi(h) = \begin{bmatrix} \partial_a \phi & \partial_c \phi \\ \partial_b \phi & \partial_d \phi \end{bmatrix}$. We have
 $s_{\Box\Box}(h) = \frac{p_{\Box}(h) + p_{\Box\Box}(h)}{2} = \frac{\operatorname{Tr}(h)^2 + \operatorname{Tr}(h^2)}{2} = a^2 + d^2 + ad + bc.$

-

Then

$$\mathbf{d}_{1} s_{\Box\Box}(h) = \begin{bmatrix} 2a+d & b \\ c & a+2d \end{bmatrix},$$
$$\mathbf{d}_{2} \mathbf{d}_{1} s_{\Box\Box}(h) = \mathbf{d}_{2} \left((2a+d) \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + (a+2d) \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right)$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
$$= (v \otimes w \mapsto v \otimes w + w \otimes v) = e + \sigma.$$

. . . .

Future directions

• Further explore the connection to the KP hierarchy.

• Find necessary and sufficient inequalities on the Plücker coordinates of V for all complex zeros of Wr(V) to be nonpositive, generalizing the Aissen–Schoenberg–Whitney theorem in the case dim(V) = 1. (The positivity conjecture implies the inequalities $\Delta_{\lambda}(V) \ge 0$ are necessary.)

• What happens to the higher Gaudin Hamiltonian T_{λ} if s_{λ} is replaced by a different symmetric function?

• Address generalizations and variations of the Shapiro–Shapiro conjecture: the discriminant conjecture, the general form of the secant conjecture, the monotone conjecture, the total reality conjecture for convex curves, ...

Thank you!