## $q$-Whittaker functions, finite fields, and Jordan forms

Slides available at snkarp.github.io

Steven N. Karp (University of Notre Dame)<br>joint work with Hugh Thomas<br>arXiv:2207. 12590

March 27th, 2023
University of Kentucky

## Schur functions

- A partition $\lambda$ is a weakly-decreasing sequence of nonnegative integers.
- e.g. $\lambda=(4,4,1)=$|  |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |



- A semistandard tableau $T$ is a filling of $\lambda$ with positive integers which is weakly increasing across rows and strictly increasing down columns.


## Definition (Schur function)

$$
s_{\lambda}\left(x_{1}, x_{2}, \ldots\right):=\sum_{T} \mathbf{x}^{T}
$$

where the sum is over all semistandard tableaux $T$ of shape $\lambda$.

- $s_{\lambda}(\mathbf{x})$ is symmetric in the variables $x_{i}$.


## Schur functions

- e.g. $s_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)=$
- Schur functions appear in many contexts; for example, they:
- form an orthonormal basis for the algebra of symmetric functions in $\mathbf{x}$;
- are characters of the irreducible polynomial representations of $\mathrm{GL}_{n}(\mathbb{C})$;
- give the values of the irreducible characters of the symmetric group $S_{n}$, when expanded in terms of power sum symmetric functions;
- are representatives for Schubert classes in the cohomology ring of the Grassmannian $\mathrm{Gr}_{k, n}(\mathbb{C})$;
- define the Schur processes of Okounkov and Reshetikhin (2003).


## Cauchy identity

## Theorem (Cauchy)

$$
\prod_{i, j \geq 1} \frac{1}{1-x_{i} y_{j}}=\sum_{\lambda} s_{\lambda}(\mathbf{x}) s_{\lambda}(\mathbf{y})
$$

- The identity is equivalent to the orthonormality of the Schur functions. It also gives the partition function for the Schur processes.
- The left-hand side counts nonnegative-integer matrices, and the right-hand side counts pairs of semistandard tableaux of the same shape.
- e.g. Taking the coefficient of $x_{1} x_{2} y_{1} y_{2}$ on each side gives



## Burge correspondence (1974)

- The Burge correspondence (also known as column Robinson-SchenstedKnuth) is a bijection

$$
M \mapsto(\mathrm{P}(M), \mathrm{Q}(M))
$$

between nonnegative-integer matrices and pairs of semistandard tableaux of the same shape. It proves the Cauchy identity for Schur functions.

- $\mathrm{P}(M)$ is obtained via column insertion and $\mathrm{Q}(M)$ via recording.
- e.g. $w=25143$
2

| 2 |
| :--- |
| 5 |



| 1 | 2 |
| :--- | :--- |
| 4 | 5 |


| 1 2 | 5 |  |
| :--- | :--- | :--- |
| 3 | 4 |  |
| $\mathrm{P}(w)$ |  |  |


| 1 | 3 | 5 |
| :--- | :--- | :--- |
| 2 | 4 |  |
| Q $(w)$ |  |  |

## Nilpotent matrices

- An $n \times n$ matrix $N$ over $\mathbb{k}$ is nilpotent if some power of $N$ is zero. Such an $N$ can be conjugated over $\mathbb{k}$ into Jordan form. Let $\mathrm{JF}^{\top}(N)$ be the transpose of the partition given by the sizes of the Jordan blocks.
- e.g. | 0 | 1 | 0 |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| 0 | 0 | 0 |$\mapsto \square \square \square \square \square$



$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \mapsto \square \square \square
$$

- Algebraically, $\mathrm{JF}^{\top}(N)$ is the partition $\lambda$ given by

$$
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i}=\operatorname{dim}\left(\operatorname{ker}\left(N^{i}\right)\right) \quad \text { for all } i
$$

## Theorem (Gansner (1981))

Let $N$ be a generic $n \times n$ strictly upper-triangular matrix, where $N_{i, j}=0$ for all inversions $(i, j)$ of $w^{-1}$. Then $\mathrm{P}(w)$ and $\mathrm{Q}(w)$ can be read off from the Jordan forms of the leading submatrices of $N$ and $w^{-1} N w$.

## Burge correspondence via Jordan forms

- e.g. $w=\widehat{25143} N=\left[\begin{array}{lllll}0 & 0 & a & b & 0 \\ 0 & 0 & c & d & e \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
$(a, b, c, d, e \in \mathbb{k}$ generic)

$\square \quad \square \square$

$\square$

| 1 | 2 | 5 |
| :--- | :--- | :--- |
| 3 | 4 |  |

## Flag variety

- A complete flag $F$ in $\mathbb{k}^{n}$ is a sequence of nested subspaces

$$
0=F_{0} \subseteq F_{1} \subseteq \cdots \subseteq F_{n-1} \subseteq F_{n}=\mathbb{k}^{n}, \quad \operatorname{dim}\left(F_{i}\right)=i \text { for all } i
$$

- An $n \times n$ (nilpotent) matrix $N$ is strictly compatible with $F$ if

$$
N\left(F_{i}\right) \subseteq F_{i-1} \quad \text { for all } i
$$

- The matrix $N$ in Gansner's theorem is precisely one which is strictly compatible with two complete flags $F$ and $F^{\prime}$ defined by

$$
F_{i}:=\left\langle\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{i}\right\rangle \quad \text { and } \quad F_{j}^{\prime}:=\left\langle\mathrm{e}_{w(1)}, \mathrm{e}_{w(2)}, \ldots, \mathrm{e}_{w(j)}\right\rangle .
$$

The two sequences of matrices in the theorem are $\left(\left.N\right|_{F_{i}}\right)_{i=1}^{n}$ and $\left(\left.N\right|_{F_{j}^{\prime}}\right)_{j=1}^{n}$.

- More generally, we can take any pair of flags $\left(F, F^{\prime}\right)$ with relative position $w$, denoted $F \xrightarrow{w} F^{\prime}$. The relative position records $\operatorname{dim}\left(F_{i} \cap F_{j}^{\prime}\right)$ for all $i$ and $j$, or alternatively, the Schubert cell of $F^{\prime}$ relative to $F$.


## Burge correspondence via flags

## Theorem (Steinberg (1976, 1988), Spaltenstein (1982), Rosso (2012))

Fix partial flags $F$ and $F^{\prime}$ with $F \xrightarrow{M} F^{\prime}$. Let $N$ be a generic nilpotent matrix strictly compatible with both $F$ and $F^{\prime}$. Then

$$
\mathrm{P}(M)=\mathrm{JF}^{\top}(N ; F) \quad \text { and } \quad \mathrm{Q}(M)=\mathrm{JF}^{\top}\left(N ; F^{\prime}\right)
$$

- If $F \xrightarrow{w} F^{\prime}$, then $F^{\prime} \xrightarrow{w^{-1}} F$. This implies the symmetry

$$
\mathrm{P}\left(w^{-1}\right)=\mathrm{Q}(w)
$$

- What happens when $\mathbb{k}$ is a finite field, and we consider all choices of $N$ (not necessarily generic)?


## $q$-Whittaker functions

- Define $[n]_{q}:=1+q+q^{2}+\cdots+q^{n-1}$ and $[n]_{q}!:=[n]_{q}[n-1]_{q} \cdots[1]_{q}$.


## Definition ( $q$-Whittaker function)

$$
W_{\lambda}\left(x_{1}, x_{2}, \ldots ; q\right):=\sum_{T}{w t_{q}}(T) \mathbf{x}^{T}
$$

where the sum is over all semistandard tableaux $T$ of shape $\lambda$.

- $W_{\lambda}(\mathbf{x} ; q)$ is symmetric in the variables $x_{i}$, and specializes to $s_{\lambda}(\mathbf{x})$ when $q=0$. We obtain the $\mathfrak{g l}_{n}$-Whittaker functions as a certain $q \rightarrow 1$ limit.
- e.g. $T=$| 1 | 2 | 4 |
| :--- | :--- | :--- |
| 3 | 5 | 7 |
| 6 |  |  |

$$
\mathrm{wt}_{q}(T)=[1]_{q}[2]_{q}[1]_{q}[2]_{q}[2]_{q}[1]_{q}[2]_{q}=(1+q)^{4}
$$

- We have the following specializations:

$$
W_{\lambda}(\mathbf{x} ; q)=P_{\lambda}(\mathbf{x} ; q, 0)=q^{\operatorname{deg}\left(\tilde{H}_{\lambda}\right)} \omega\left(\widetilde{H}_{\lambda}(\mathbf{x} ; 1 / q, 0)\right), \quad W_{\lambda}(\mathbf{x} ; 1)=e_{\lambda^{\top}}(\mathbf{x})
$$

## $q$-Cauchy identity

## Theorem (Macdonald (1995))

$$
\prod_{i, j \geq 1} \prod_{d \geq 0} \frac{1}{1-x_{i} y_{j} q^{d}}=\sum_{\lambda} \frac{(1-q)^{-\lambda_{1}}}{\prod_{i \geq 1}\left[\lambda_{i}-\lambda_{i+1}\right]_{q}!} W_{\lambda}(\mathbf{x} ; q) W_{\lambda}(\mathbf{y} ; q)
$$

- This gives the partition function for the $q$-Whittaker processes, a special case of the Macdonald processes of Borodin and Corwin (2014).
- e.g. Taking the coefficient of $x_{1} x_{2} y_{1} y_{2}$ on each side gives

$$
(1-q)^{-2}+(1-q)^{-2}=(1-q)^{-1}+(1-q)^{-2}(1+q)
$$

## $q$-Burge correspondence

- e.g. $w=12 \quad N=\left[\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right] \quad\left(a \in \mathbb{F}_{1 / q}\right)$

$$
\begin{aligned}
& a \neq 0: \\
& \begin{array}{|l|}
\hline 1 \\
\hline 2 \\
\hline
\end{array} \\
& \begin{array}{ll}
\begin{array}{ll}
1 \\
\hline
\end{array} & \mathbb{P}=1 \\
2 & \\
12 & \mathbb{P}=q
\end{array}
\end{aligned}
$$

- e.g. $w=\hat{21} \quad N=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

$$
\left.\left.\begin{array}{ccccc}
\mathrm{P}(w): & 1\left[\begin{array}{ccc}
1 & 1 & 1 \\
0
\end{array}\right] & \begin{array}{ll}
1 \\
2
\end{array}\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]
\end{array} \quad \mathrm{Q}(w): \begin{array}{cc}
2 & 2 \\
0
\end{array}\right] \begin{array}{lll}
2 & 1 \\
1 & 1 & 0 \\
0 & 0
\end{array}\right]
$$

## $q$-Burge correspondence

- Fix partial flags $F \xrightarrow{M} F^{\prime}$ over $\mathbb{F}_{1 / q}$. For semistandard tableaux $T$ and $T^{\prime}$ of the same shape, let $N$ denote a uniformly random nilpotent matrix strictly compatible with both $F$ and $F^{\prime}$. Define

$$
\begin{equation*}
\mathrm{p}_{M}\left(T, T^{\prime}\right):=\mathbb{P}\left(\mathrm{JF}^{\top}(N ; F)=T \text { and } \mathrm{JF}^{\top}\left(N ; F^{\prime}\right)=T^{\prime}\right) \tag{*}
\end{equation*}
$$

## Theorem (Karp, Thomas (2022))

(i) The maps $\mathrm{p}_{M}(\cdot, \cdot)$ define a probabilistic bijection proving the Cauchy identity for $q$-Whittaker functions, called the $q$-Burge correspondence.
(ii) The bijection converges to the classical Burge correspondence as $q \rightarrow 0$.

- The inverse probabilities are given by $(*)$ for $N$ fixed and $\left(F, F^{\prime}\right)$ random.


## Problem

Is $\mathrm{p}_{\mathrm{M}}\left(T, T^{\prime}\right)$ a rational function of q ? (If so, it is a polynomial.)

- Two other probabilistic bijections were given by Matveev and Petrov (2017), using $q$-analogues of row and column insertion.


## Quiver representations and the preprojective algebra

- Consider a path quiver with a unique sink:

$$
Q=
$$

- A representation $V$ of $Q$ is an assignment of a vector space to each vertex and a linear map to each arrow, e.g.,

- We will only consider $V$ where every linear map is injective. Isomorphism classes of such $V$ are indexed by nonnegative-integer matrices $M$.
- We now decorate $V$ with a linear map for the reverse of each arrow, such that a relation holds for every vertex:


$$
\alpha \circ \gamma \pm \delta \circ \beta=0
$$

This defines a module $V^{\sharp}$ over the preprojective algebra of $Q$.

## Socle filtration

- Up to isomorphism, $V^{\sharp}$ is given (non-uniquely) by a triple $\left(F, F^{\prime}, N\right)$ :

- The socle filtration of $V^{\sharp}$ corresponds precisely to the pair of tableaux

$$
\left(T, T^{\prime}\right)=\left(\mathrm{JF}^{\top}(N ; F), \mathrm{JF}^{\top}\left(N ; F^{\prime}\right)\right)
$$

- e.g.


$$
\longleftrightarrow\left(\begin{array}{|l|l|l|}
\hline 1 & 2 \\
\hline 2 & , & \left.\begin{array}{|l|l}
1 & 2 \\
\hline 2 &
\end{array}\right) .
\end{array}\right.
$$

## Counting isomorphism classes

- The $q$-Burge correspondence implies enumerative results about such modules $V \sharp$. For example:


## Theorem (Karp, Thomas (2022))

Let $\left(T, T^{\prime}\right)$ be a pair of semistandard tableaux of shape $\lambda$, and let $\mathbf{d}$ be a dimension vector of $Q$. Then

$$
\sum_{\left[V^{\sharp}\right]} \frac{1}{\left|\operatorname{Aut}\left(V^{\sharp}\right)\right|}=\frac{q^{c(\mathbf{d})}(1-q)^{-\lambda_{1}}}{\prod_{i \geq 1}\left[\lambda_{i}-\lambda_{i+1}\right]_{q}!} \mathrm{wt}_{q}(T) \mathrm{wt}_{q}\left(T^{\prime}\right),
$$

where the sum is over all isomorphism classes $\left[V^{\sharp}\right]$ of modules $V^{\sharp}$ over $\mathbb{F}_{1 / q}$ with dimension vector $\mathbf{d}$ and socle filtration corresponding to $\left(T, T^{\prime}\right)$.

## Thank you!

