q-Whittaker functions, finite fields, and Jordan forms

Slides available at snkarp.github.io

Steven N. Karp (University of Notre Dame) joint work with Hugh Thomas arXiv:2207.12590

> March 27th, 2023 University of Kentucky

Schur functions

• A partition λ is a weakly-decreasing sequence of nonnegative integers.

• A semistandard tableau T is a filling of λ with positive integers which is weakly increasing across rows and strictly increasing down columns.

Definition (Schur function)

$$s_{\lambda}(x_1, x_2, \dots) := \sum_T \mathbf{x}^T,$$

where the sum is over all semistandard tableaux T of shape λ .

• $s_{\lambda}(\mathbf{x})$ is symmetric in the variables x_i .

Schur functions

• e.g.
$$s_{(2,1)}(x_1, x_2, x_3) =$$

 $x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + x_1 x_2 x_3 + x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2$
 $\boxed{11}_2$ $\boxed{11}_3$ $\boxed{12}_2$ $\boxed{12}_3$ $\boxed{13}_3$ $\boxed{21}_3$ $\boxed{22}_3$ $\boxed{3}_3$

• Schur functions appear in many contexts; for example, they:

- form an orthonormal basis for the algebra of symmetric functions in x;
- are characters of the *irreducible polynomial representations* of GL_n(ℂ);
- give the values of the *irreducible characters* of the symmetric group S_n , when expanded in terms of power sum symmetric functions;
- are representatives for Schubert classes in the cohomology ring of the Grassmannian Gr_{k,n}(C);
- define the Schur processes of Okounkov and Reshetikhin (2003).

Cauchy identity

Theorem (Cauchy)

$$\prod_{i,j\geq 1} \frac{1}{1-x_i y_j} = \sum_{\lambda} s_{\lambda}(\mathbf{x}) s_{\lambda}(\mathbf{y})$$

• The identity is equivalent to the orthonormality of the Schur functions. It also gives the partition function for the Schur processes.

• The left-hand side counts *nonnegative-integer matrices*, and the right-hand side counts *pairs of semistandard tableaux of the same shape*.

• e.g. Taking the coefficient of $x_1x_2y_1y_2$ on each side gives

Burge correspondence (1974)

• The *Burge correspondence* (also known as *column Robinson–Schensted–Knuth*) is a bijection

 $M\mapsto (\mathsf{P}(M),\mathsf{Q}(M))$

between nonnegative-integer matrices and pairs of semistandard tableaux of the same shape. It proves the Cauchy identity for Schur functions.

• P(M) is obtained via column insertion and Q(M) via recording.

• e.g. w = 25143

Nilpotent matrices

• An $n \times n$ matrix N over \Bbbk is *nilpotent* if some power of N is zero. Such an N can be conjugated over \Bbbk into *Jordan form*. Let $JF^{\top}(N)$ be the *transpose* of the partition given by the sizes of the Jordan blocks.

• e.g.
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
 \mapsto $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ \mapsto $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ \mapsto $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ \mapsto

• Algebraically, $\mathsf{JF}^{\top}(N)$ is the partition λ given by

 $\lambda_1 + \lambda_2 + \cdots + \lambda_i = \dim(\ker(N^i))$ for all *i*.

Theorem (Gansner (1981))

Let N be a generic $n \times n$ strictly upper-triangular matrix, where $N_{i,j} = 0$ for all inversions (i,j) of w^{-1} . Then P(w) and Q(w) can be read off from the Jordan forms of the leading submatrices of N and $w^{-1}Nw$.

Burge correspondence via Jordan forms

Steven N. Karp (Notre Dame)

q-Whittaker functions, finite fields, and Jordan forms

March 27th, 2023

7 / 16

Flag variety

• A complete flag F in \mathbb{k}^n is a sequence of nested subspaces

 $0 = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_{n-1} \subseteq F_n = \mathbb{k}^n, \qquad \dim(F_i) = i \text{ for all } i.$

• An $n \times n$ (nilpotent) matrix N is strictly compatible with F if

 $N(F_i) \subseteq F_{i-1}$ for all *i*.

• The matrix N in Gansner's theorem is precisely one which is strictly compatible with two complete flags F and F' defined by

$$F_i := \langle e_1, e_2, \dots, e_i \rangle$$
 and $F'_j := \langle e_{w(1)}, e_{w(2)}, \dots, e_{w(j)} \rangle$.

The two sequences of matrices in the theorem are $(N|_{F_i})_{i=1}^n$ and $(N|_{F'_i})_{i=1}^n$.

• More generally, we can take any pair of flags (F, F') with *relative* position w, denoted $F \xrightarrow{w} F'$. The relative position records dim $(F_i \cap F'_j)$ for all *i* and *j*, or alternatively, the Schubert cell of F' relative to *F*.

8 / 16

Theorem (Steinberg (1976, 1988), Spaltenstein (1982), Rosso (2012))

Fix partial flags F and F' with $F \xrightarrow{M} F'$. Let N be a generic nilpotent matrix strictly compatible with both F and F'. Then

 $\mathsf{P}(M) = \mathsf{JF}^{\top}(N; F)$ and $\mathsf{Q}(M) = \mathsf{JF}^{\top}(N; F')$.

• If $F \xrightarrow{w} F'$, then $F' \xrightarrow{w^{-1}} F$. This implies the symmetry

$$\mathsf{P}(w^{-1}) = \mathsf{Q}(w).$$

• What happens when \Bbbk is a *finite* field, and we consider *all* choices of N (not necessarily generic)?

q-Whittaker functions

• Define
$$[n]_q := 1 + q + q^2 + \dots + q^{n-1}$$
 and $[n]_q! := [n]_q [n-1]_q \dots [1]_q.$

Definition (q-Whittaker function)

$$W_{\lambda}(x_1, x_2, \ldots; q) := \sum_{T} \operatorname{wt}_q(T) \mathbf{x}^T,$$

where the sum is over all semistandard tableaux T of shape λ .

• $W_{\lambda}(\mathbf{x}; q)$ is symmetric in the variables x_i , and specializes to $s_{\lambda}(\mathbf{x})$ when q = 0. We obtain the \mathfrak{gl}_n -Whittaker functions as a certain $q \to 1$ limit.

• e.g.
$$T = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 5 & 7 \\ 6 \end{bmatrix}$$
 $wt_q(T) = [1]_q[2]_q[1]_q[2]_q[1]_q[2]_q = (1+q)^4$

• We have the following specializations:

 $W_{\lambda}(\mathbf{x};q) = P_{\lambda}(\mathbf{x};q,0) = q^{\deg(\widetilde{H}_{\lambda})} \omega(\widetilde{H}_{\lambda}(\mathbf{x};1/q,0)), \quad W_{\lambda}(\mathbf{x};1) = e_{\lambda^{\top}}(\mathbf{x}).$

March 27th. 2023

10 / 16

q-Cauchy identity

Theorem (Macdonald (1995))

$$\prod_{i,j\geq 1}\prod_{d\geq 0}\frac{1}{1-x_iy_jq^d}=\sum_{\lambda}\frac{(1-q)^{-\lambda_1}}{\prod\limits_{i\geq 1}[\lambda_i-\lambda_{i+1}]_q!}W_{\lambda}(\mathbf{x};q)W_{\lambda}(\mathbf{y};q)$$

• This gives the partition function for the *q*-Whittaker processes, a special case of the Macdonald processes of Borodin and Corwin (2014).

• e.g. Taking the coefficient of $x_1x_2y_1y_2$ on each side gives

$$(1-q)^{-2} + (1-q)^{-2} = (1-q)^{-1} + (1-q)^{-2}(1+q)$$

q-Burge correspondence

Steven N. Karp (Notre Dame)

q-Whittaker functions, finite fields, and Jordan forms

q-Burge correspondence

• Fix partial flags $F \xrightarrow{M} F'$ over $\mathbb{F}_{1/q}$. For semistandard tableaux T and T' of the same shape, let N denote a uniformly random nilpotent matrix strictly compatible with both F and F'. Define

$$\mathsf{p}_M(T,T') := \mathbb{P}(\mathsf{JF}^{\top}(N;F) = T \text{ and } \mathsf{JF}^{\top}(N;F') = T'), \qquad (*)$$

Theorem (Karp, Thomas (2022))

(i) The maps $p_M(\cdot, \cdot)$ define a probabilistic bijection proving the Cauchy identity for q-Whittaker functions, called the q-Burge correspondence. (ii) The bijection converges to the classical Burge correspondence as $q \rightarrow 0$.

• The inverse probabilities are given by (*) for N fixed and (F, F') random.

Problem

Is $p_M(T, T')$ a rational function of q? (If so, it is a polynomial.)

• Two other probabilistic bijections were given by Matveev and Petrov (2017), using *q*-analogues of row and column insertion.

Steven N. Karp (Notre Dame)

q-Whittaker functions, finite fields, and Jordan forms

Quiver representations and the preprojective algebra

• Consider a path quiver with a unique sink:

• A representation V of Q is an assignment of a vector space to each vertex and a linear map to each arrow, e.g.,

$$V = \underbrace{\begin{smallmatrix} 1 \\ k \\ \bullet \end{array} } \underbrace{\begin{bmatrix} -1 \\ k \\ \bullet \end{array} } \underbrace{\begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}}_{k^2} \underbrace{\begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}}_{k^2} \underbrace{\begin{bmatrix} 2 & 0 \\ 0 \\ 0 \end{bmatrix}}_{k^2} \underbrace{\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}}_{k^2} \underbrace{\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

• We will only consider V where every linear map is injective. Isomorphism classes of such V are indexed by nonnegative-integer matrices M.

• We now decorate V with a linear map for the reverse of each arrow, such that a relation holds for every vertex:

This defines a module V^{\sharp} over the *preprojective algebra* of Q.

Socle filtration

• Up to isomorphism, V^{\sharp} is given (non-uniquely) by a triple (F, F', N):

• The socle filtration of V^{\sharp} corresponds precisely to the pair of tableaux

Counting isomorphism classes

• The *q*-Burge correspondence implies enumerative results about such modules V^{\sharp} . For example:

Theorem (Karp, Thomas (2022))

Let (T, T') be a pair of semistandard tableaux of shape λ , and let **d** be a dimension vector of Q. Then

$$\sum_{[V^{\sharp}]} \frac{1}{|\mathsf{Aut}(V^{\sharp})|} = \frac{q^{c(\mathbf{d})}(1-q)^{-\lambda_1}}{\prod\limits_{i\geq 1} [\lambda_i - \lambda_{i+1}]_q!} \operatorname{wt}_q(T) \operatorname{wt}_q(T'),$$

where the sum is over all isomorphism classes $[V^{\sharp}]$ of modules V^{\sharp} over $\mathbb{F}_{1/q}$ with dimension vector **d** and socle filtration corresponding to (T, T').