Sign variation, the Grassmannian, and total positivity

arXiv:1503.05622 Slides available at math.berkeley.edu/~skarp

Steven N. Karp, UC Berkeley

February 19th, 2016 University of Michigan, Ann Arbor

Alternating curves

Proposition

Let $f : [0,1] \to \mathbb{R}^k$ be a continuous curve. Then no hyperplane through 0 contains k points on the curve iff the determinants

 $\det[f(t_1) \mid \cdots \mid f(t_k)] \qquad (0 \le t_1 < \cdots < t_k \le 1)$

are either all positive or all negative.

Proof

Since $\{(t_1, \dots, t_k) \in \mathbb{R}^k : 0 \le t_1 < \dots < t_k \le 1\} \subseteq \mathbb{R}^k$ is connected, its image $\{\det[f(t_1) \mid \dots \mid f(t_k)] : 0 \le t_1 < \dots < t_k \le 1\} \subseteq \mathbb{R}$ is connected.

Theorem (Gantmakher, Krein (1950); Schoenberg, Whitney (1951))

Let $x_1, \dots, x_n \in \mathbb{R}^k$ span \mathbb{R}^k . Then the following are equivalent: (i) the piecewise-linear path x_1, \dots, x_n crosses any hyperplane through 0 at most k - 1 times; (ii) the sequence $(a^T x_1, \dots, a^T x_n)$ changes sign at most k - 1 times for all $a \in \mathbb{R}^n$; and (iii) the $k \times k$ minors of the $k \times n$ matrix $[x_1| \dots |x_n]$ are either all nonnegative or all nonpositive.

• e.g. $\begin{array}{c} x_4 \bullet \\ & & \\ x_2 \bullet \\ & \\ x_2 \bullet \\ & \\ \end{array} \xrightarrow{} x_3$

The set of such point configurations (x₁, ..., x_n), modulo linear automorphisms of ℝ^k, is the *totally nonnegative Grassmannian*.
Can we characterize the maximum number of hyperplane crossings of the path x₁, ..., x_n in terms of the k × k minors of [x₁|...|x_n]?

Steven N. Karp (UC Berkeley)

The Grassmannian Gr_{k,n}

• The Grassmannian $Gr_{k,n}$ is the set of k-dimensional subspaces V of \mathbb{R}^n .

$$V := \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in \mathsf{Gr}_{2,4}$$
$$= \begin{bmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & 3 & 2 \end{bmatrix}$$

$$\Delta_{\{1,2\}} = 1, \Delta_{\{1,3\}} = 3, \Delta_{\{1,4\}} = 2, \Delta_{\{2,3\}} = 4, \Delta_{\{2,4\}} = 3, \Delta_{\{3,4\}} = 1$$

Given V ∈ Gr_{k,n} in the form of a k × n matrix, for I ∈ (^[n]_k) let Δ_I(V) be the k × k minor of V with columns I. The Plücker coordinates Δ_I(V) are well defined up to multiplication by a global nonzero constant.
We say that V ∈ Gr_{k,n} is totally nonnegative if Δ_I(V) ≥ 0 for all I ∈ (^[n]_k), and totally positive if Δ_I(V) > 0 for all I ∈ (^[n]_k). Denote the set totally nonnegative V by Gr^{≥0}_{k,n}, and the set of totally positive V by Gr^{>0}_{k,n}.

Sign variation

• For $v \in \mathbb{R}^n$, let var(v) be the number of sign changes in the sequence (v_1, v_2, \dots, v_n) , ignoring any zeros.

$$var(1, -4, 0, -3, 6, 0, -1) = var(1, -4, -3, 6, -1) = 3$$

Similarly, let $\overline{var}(v)$ be the maximum of var(w) over all $w \in \mathbb{R}^n$ obtained from v by changing zero components of w.

$$\overline{var}(1, -4, 0, -3, 6, 0, -1) = 5$$

Theorem (Gantmakher, Krein (1950))

Let $V \in Gr_{k,n}$.

(i) V is totally nonnegative iff $var(v) \le k - 1$ for all $v \in V$. (ii) V is totally positive iff $\overline{var}(v) \le k - 1$ for all nonzero $v \in V$.

• e.g.
$$\begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \end{bmatrix} \in \mathsf{Gr}_{2,4}^{>0}.$$

• Note that every $V \in \operatorname{Gr}_{k,n}$ contains a vector v with $\operatorname{var}(v) \ge k - 1$.

A history of sign variation and total positivity

Descartes's rule of signs (1637): The number of positive real zeros of a real polynomial ∑_{i=0}ⁿ a_itⁱ is at most var(a₀, a₁, ..., a_n).
Pólya (1912) asked when a linear map A : ℝ^k → ℝⁿ diminishes variation, i.e. satisfies var(Ax) ≤ var(x) for all x ∈ ℝ^k. Schoenberg (1930) showed that an injective A diminishes variation iff for j = 1,..., k, all nonzero j × j minors of A have the same sign.

formations. The problem of characterizing such transformations was attacked by Schoenberg in 1930 with only partial success

• Gantmakher, Krein (1935): The eigenvalues of a *totally positive* square matrix (whose minors are all positive) are real, positive, and distinct.

• Gantmakher, Krein (1950): Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems (Russian), 2nd ed., 359pp.

22825 (AEC-tr-4481) OSCILLATION MATRICES AND KERNELS AND SMALL VIBRATIONS OF MECHANICAL SYSTEMS. Second Edition Corrected and Expanded. F. R. Gantmakher and M. G. Krein. Translated from a Publication of the State Publishing House for Technical-Theoretical Literature, Moscow-Leningrad, 1950. 414p.

A natural mathematical base is proposed for the investigation of the so-called oscillation properties of small harmonic oscillations of linear elastic continua, such as, transverse oscillations of strings, rods, and multiple-span beams, and torsional oscillations of shafts. The book is

A history of sign variation and total positivity

• Whitney (1952): The totally positive matrices are dense in the totally nonnegative matrices.

• Aissen, Schoenberg, Whitney (1952): Let $r_1, \dots, r_n \in \mathbb{C}$. Then r_1, \dots, r_n are all nonnegative reals iff $s_{\lambda}(r_1, \dots, r_n) \geq 0$ for all partitions λ .

• Karlin (1968): *Total Positivity, Volume I*, 576pp.

• Lusztig (1994) constructed a theory of total positivity for G and G/P.

One of the main tools in our study of $G_{\geq 0}$ and $G_{>0}$ is the theory of canonical bases in [L1]. Thus, our proof of the fact that $G_{\geq 0}$ is closed in G (Theorem 4.3) is based on the positivity properties of the canonical bases (in the simply-laced case), proved in [L1],[L2], which is a non-elementary statement, depending ultimately on the Weil conjectures. The

Rietsch (1997) and Marsh, Rietsch (2004) developed the theory for G/P. • Fomin and Zelevinsky (2000s) introduced cluster algebras.

• Postnikov (2006) and others studied the combinatorics of $Gr_{k,n}^{\geq 0}$.

• Kodama, Williams (2014): A τ -function $\tau = \sum_{I \in {[n] \choose k}} \Delta_I(V) s_{\lambda(I)}$

associated to $V \in Gr_{k,n}$ gives a *regular* soliton solution to the KP equation iff V is totally nonnegative.

How close is a subspace to being totally positive?

• Can we determine $\max_{v \in V} \operatorname{var}(v)$ and $\max_{v \in V \setminus \{0\}} \overline{\operatorname{var}}(v)$ from the Plücker coordinates of V?

Theorem (Karp (2015))

Let $V \in Gr_{k,n}$ and $s \ge 0$. Then $\overline{var}(v) \le k - 1 + s$ for all nonzero $v \in V$ iff

 $\overline{\operatorname{var}}((\Delta_{J\cup\{i\}}(V))_{i\notin J}) \leq s$

for all $J \in {[n] \choose k-1}$ such that the sequence above is not identically zero.

• e.g. Let $V := \begin{bmatrix} 1 & 0 & -2 & 4 \\ 0 & 2 & 1 & 1 \end{bmatrix} \in Gr_{2,4}$ and s := 1. The fact that $\overline{var}(v) \leq 2$ for all $v \in V \setminus \{0\}$ is equivalent to the fact that the sequences $(\Delta_{\{1,2\}}, \Delta_{\{1,3\}}, \Delta_{\{1,4\}}) = (2, 1, 1), \quad (\Delta_{\{1,3\}}, \Delta_{\{2,3\}}, \Delta_{\{3,4\}}) = (1, 4, -6),$ $(\Delta_{\{1,2\}}, \Delta_{\{2,3\}}, \Delta_{\{2,4\}}) = (2, 4, -8), \quad (\Delta_{\{1,4\}}, \Delta_{\{2,4\}}, \Delta_{\{3,4\}}) = (1, -8, -6)$ each change sign at most once.

Theorem (Karp (2015))

Let $V \in \operatorname{Gr}_{k,n}$ and $s \geq 0$. (i) If $var(v) \leq k - 1 + s$ for all $v \in V$, then $\operatorname{var}((\Delta_{J\cup\{i\}}(V))_{i\notin J}) \leq s \quad \text{for all } J \in \binom{[n]}{\iota}.$ The converse holds if V is generic (i.e. $\Delta_I(V) \neq 0$ for all I). (ii) We can perturb V into a generic W with $\max_{v \in V} \operatorname{var}(v) = \max_{v \in W} \operatorname{var}(v)$. • e.g. Consider $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0.1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0.01 \\ 0 & 1 & 0.1 & 1.001 \end{bmatrix}$. The 4 sequences of Plücker coordinates are $(\Delta_{\{1,2\}}, \Delta_{\{1,3\}}, \Delta_{\{1,4\}}) = (1, \overset{0.1}{\emptyset}, \overset{1,001}{\lambda}), \quad (\Delta_{\{1,3\}}, \Delta_{\{2,3\}}, \Delta_{\{3,4\}}) = (\overset{0.1}{\emptyset}, -1, 1),$ $(\Delta_{\{1,2\}}, \Delta_{\{2,3\}}, \Delta_{\{2,4\}}) = (1, -1, \overset{-0.01}{\varnothing}), \quad (\Delta_{\{1,4\}}, \Delta_{\{2,4\}}, \Delta_{\{3,4\}}) \overset{1.001}{=} (\overset{-0.01}{(\cancel{I}, \cancel{I}, 1)}).$ • Note: var is *increasing* while var is *decreasing* with respect to genericity.

Oriented matroids

• An *oriented matroid* is a combinatorial abstraction of a real subspace, which records the Plücker coordinates up to sign, or equivalently the vectors up to sign.

• These results generalize to oriented matroids.

Amplituhedra

• Let $Z : \mathbb{R}^n \to \mathbb{R}^{k+m}$ be a linear map, and $Z_{Gr} : Gr_{k,n}^{\geq 0} \to Gr_{k,k+m}$ the map it induces on $Gr_{k,n}^{\geq 0}$. In the case that all $(k+m) \times (k+m)$ minors of Z are positive, the image $Z_{Gr}(Gr_{k,n}^{\geq 0})$ is called a *(tree) amplituhedron*.

• e.g. Let
$$Z := \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 \\ 4 & 1 & 1 & 1 & 4 \end{bmatrix}$$
 and $k := 1$. Then $Z_{Gr}(Gr_{1,5}^{\geq 0})$ equals

$$\begin{cases} (1:-2a-b+d+2e: & a,b,c,d,e \geq 0, \\ 4a+b+c+d+4e) & a+b+c+d+e = 1 \end{cases} \subseteq \mathbb{P}^2.$$

$$v_1 = (-2,4)$$

$$v_2 = (-1,1)$$

$$v_3 = (0,0)$$

Amplituhedra

• When k = 1, amplituhedra are precisely *cyclic polytopes*. Cyclic polytopes achieve the maximum number of faces (in every dimension) in Stanley's upper bound theorem (1975).

• Lam (2015) proposed relaxing the positivity condition on Z, and called the more general class of images $Z_{Gr}(Gr_{k,n}^{\geq 0})$ Grassmann polytopes. When k = 1, Grassmann polytopes are precisely polytopes.

• Arkani-Hamed and Trnka (2013) introduced amplituhedra in order to study *scattering amplitudes*, which they compute as an integral over the amplituhedron $Z_{Gr}(Gr_{k,n}^{\geq 0})$ when m = 4.

• A scattering amplitude is a complex number whose modulus squared is the probability of observing a certain scattering process, e.g. a process involving *n* gluons, k + 2 of negative helicity and n - k - 2 of positive helicity.

When is Z_{Gr} well defined?

• Recall that $Z : \mathbb{R}^n \to \mathbb{R}^{k+m}$ is a linear map, which induces a map $Z_{\text{Gr}} : \operatorname{Gr}_{k,n}^{\geq 0} \to \operatorname{Gr}_{k,k+m}^{k}$ on $\operatorname{Gr}_{k,n}^{\geq 0}$. How do we know that Z_{Gr} is well defined on $\operatorname{Gr}_{k,n}^{\geq 0}$, i.e. $\dim(Z_{\text{Gr}}(V)) = k$ for all $V \in \operatorname{Gr}_{k,n}^{\geq 0}$?

• Note: $\dim(Z_{Gr}(V)) = k \iff Z(v) \neq 0$ for all nonzero $v \in V$.

Lemma

$$\bigcup \operatorname{Gr}_{k,n}^{\geq 0} = \{ v \in \mathbb{R}^n : \operatorname{var}(v) \leq k - 1 \}.$$

• \subseteq follows from Gantmakher and Krein's theorem. \supseteq is an exercise.

$$(2,0,5,-1,-4,-1,3)\in egin{bmatrix} 2&0&5&0&0&0&0\ 0&0&0&-1&-4&-1&0\ 0&0&0&0&0&0&3 \end{bmatrix}\in \mathsf{Gr}_{3,7}^{\geq 0}$$

Theorem (Karp (2015))

Let $Z : \mathbb{R}^n \to \mathbb{R}^{k+m}$ have rank k + m, and $W \in \operatorname{Gr}_{k+m,n}$ be the row span of Z. The following are equivalent: (i) the map Z_{Gr} is well defined, i.e. $\dim(Z_{\operatorname{Gr}}(V)) = k$ for all $V \in \operatorname{Gr}_{k,n'}^{\geq 0}$; (ii) $\operatorname{var}(v) \ge k$ for all nonzero $v \in \ker(Z) = W^{\perp}$; and (iii) $\overline{\operatorname{var}}((\Delta_{J \setminus \{i\}}(W))_{i \in J}) \le m$ for all $J \in {[n] \choose k+m+1}$ with $\dim(W_J) = k+m$.

• e.g. Let
$$Z := \begin{bmatrix} 2 & -1 & 1 & 1 \\ 1 & 2 & -1 & 3 \end{bmatrix}$$
, so $n = 4$, $k + m = 2$. The 4 relevant sequences of Plücker coordinates (as J ranges over $\binom{[4]}{3}$) are $(\Delta_{\{2,3\}}, \Delta_{\{1,3\}}, \Delta_{\{1,2\}}) = (-1, -3, 5), (\Delta_{\{3,4\}}, \Delta_{\{1,4\}}, \Delta_{\{1,3\}}) = (4, 5, -3), (\Delta_{\{2,4\}}, \Delta_{\{1,4\}}, \Delta_{\{1,2\}}) = (-5, 5, 5), (\Delta_{\{3,4\}}, \Delta_{\{2,4\}}, \Delta_{\{2,3\}}) = (4, -5, -1).$ The maximum number of sign changes among these 4 sequences is 1,

which is at most 2 - k iff $k \le 1$. Hence Z_{Gr} is well defined iff $k \le 1$.

Steven N. Karp (UC Berkeley)

Theorem (Karp (2015))

Let $Z : \mathbb{R}^n \to \mathbb{R}^{k+m}$ have rank k + m, and $W \in \operatorname{Gr}_{k+m,n}$ be the row span of Z. The following are equivalent: (i) the map Z_{Gr} is well defined, i.e. $\dim(Z_{\operatorname{Gr}}(V)) = k$ for all $V \in \operatorname{Gr}_{k,n}^{\geq 0}$; (ii) $\operatorname{var}(v) \geq k$ for all nonzero $v \in \ker(Z) = W^{\perp}$; and (iii) $\overline{\operatorname{var}}((\Delta_{J \setminus \{i\}}(W))_{i \in J}) \leq m$ for all $J \in {[n] \choose k+m+1}$ with $\dim(W_J) = k + m$.

If m = 0, then (ii) ⇔ (iii) is a 'dual version' of Gantmakher and Krein's theorem: V ∈ Gr_{k,n} is totally positive iff var(v) ≥ k for all v ∈ V[⊥] \ {0}.
Arkani-Hamed and Trnka's condition on Z (for Z to define an amplituhedron) is that its (k + m) × (k + m) minors are all positive. In this case, Z_{Gr} is well defined by either (ii) or (iii).
Lam's condition on Z (for Z to define a Grassmann polytope) is that W has a totally positive k-dimensional subspace. This is sufficient by (ii).
Open problem: is Lam's condition also necessary?

Further directions

• Is there an efficient way to test whether a given $V \in \operatorname{Gr}_{k,n}$ is totally positive using the data of sign patterns? (For Plücker coordinates, in order to test whether V is totally positive, we only need to check that some particular k(n-k) Plücker coordinates are positive, not all $\binom{n}{k}$.)

• Is there a simple way to index the cell decomposition of $Gr_{k,n}^{\geq 0}$ using the data of sign patterns?

• Is there a nice stratification of the subset of the Grassmannian

$$\{V \in \operatorname{Gr}_{k,n} : \operatorname{var}(x) \leq k - 1 + s \text{ for all } x \in V\},\$$

for fixed s? (If s = 0, this is $Gr_{k,n}^{\geq 0}$.)

• I determined when Z_{Gr} is well defined on the totally positive Grassmannian $Gr_{k,n}^{>0}$. When is Z_{Gr} well defined on a given cell of $Gr_{k,n}^{\geq 0}$?

Thank you!