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Alternating curves

Proposition

Let f : [0, 1]→ Rk be a continuous curve. Then no hyperplane through 0
contains k points on the curve iff the determinants

det[ f (t1) | · · · | f (tk) ] (0 ≤ t1 < · · · < tk ≤ 1)

are either all positive or all negative.

Proof

Since {(t1, · · ·, tk) ∈ Rk : 0 ≤ t1 < · · · < tk ≤ 1} ⊆ Rk is connected, its
image {det[ f (t1) | · · · | f (tk) ] : 0 ≤ t1 < · · · < tk ≤ 1} ⊆ R is connected.

How can we discretize this result?
a

aT x > 0

aT x < 0
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Alternating curves

Theorem (Gantmakher, Krein (1950); Schoenberg, Whitney (1951))

Let x1, · · ·, xn ∈ Rk span Rk . Then the following are equivalent:
(i) the piecewise-linear path x1, · · ·, xn crosses any hyperplane through 0 at
most k − 1 times;
(ii) the sequence (aT x1, · · ·, aT xn) changes sign at most k − 1 times for all
a ∈ Rn; and
(iii) the k × k minors of the k × n matrix [x1| · · · |xn] are either all
nonnegative or all nonpositive.

e.g.
x1x2

x3
x4

The set of such point configurations (x1, · · ·, xn), modulo linear
automorphisms of Rk , is the totally nonnegative Grassmannian.

Can we characterize the maximum number of hyperplane crossings of
the path x1, · · ·, xn in terms of the k × k minors of [x1| · · · |xn]?
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The Grassmannian Grk ,n

The Grassmannian Grk,n is the set of k-dimensional subspaces V of Rn.

V := 0

(1, 0,−4,−3)

(0, 1, 3, 2)

=

[
1 0 −4 −3
0 1 3 2

]
=

[
1 1 −1 −1
0 1 3 2

] ∈ Gr2,4

∆{1,2} = 1,∆{1,3} = 3,∆{1,4} = 2,∆{2,3} = 4,∆{2,4} = 3,∆{3,4} = 1

Given V ∈ Grk,n in the form of a k × n matrix, for I ∈
([n]
k

)
let ∆I (V ) be

the k × k minor of V with columns I . The Plücker coordinates ∆I (V ) are
well defined up to multiplication by a global nonzero constant.

We say that V ∈ Grk,n is totally nonnegative if ∆I (V ) ≥ 0 for all

I ∈
([n]
k

)
, and totally positive if ∆I (V ) > 0 for all I ∈

([n]
k

)
. Denote the set

totally nonnegative V by Gr≥0k,n, and the set of totally positive V by Gr>0
k,n.
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Sign variation

For v ∈ Rn, let var(v) be the number of sign changes in the sequence
(v1, v2, · · ·, vn), ignoring any zeros.

var(1,−4, 0,−3, 6, 0,−1) = var(1,−4,−3, 6,−1) = 3

Similarly, let var(v) be the maximum of var(w) over all w ∈ Rn obtained
from v by changing zero components of w .

var(1,−4, 0,−3, 6, 0,−1) = 5

Theorem (Gantmakher, Krein (1950))

Let V ∈ Grk,n.
(i) V is totally nonnegative iff var(v) ≤ k − 1 for all v ∈ V .
(ii) V is totally positive iff var(v) ≤ k − 1 for all nonzero v ∈ V .

e.g.

[
1 0 −4 −3
0 1 3 2

]
∈ Gr>0

2,4.

Note that every V ∈ Grk,n contains a vector v with var(v) ≥ k − 1.
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A history of sign variation and total positivity

Descartes’s rule of signs (1637): The number of positive real zeros of a
real polynomial

∑n
i=0 ai t

i is at most var(a0, a1, · · ·, an).
Pólya (1912) asked when a linear map A : Rk → Rn diminishes variation,

i.e. satisfies var(Ax) ≤ var(x) for all x ∈ Rk . Schoenberg (1930) showed
that an injective A diminishes variation iff for j = 1, · · ·, k , all nonzero j × j
minors of A have the same sign.

Gantmakher, Krein (1935): The eigenvalues of a totally positive square
matrix (whose minors are all positive) are real, positive, and distinct.

Gantmakher, Krein (1950):
Oscillation Matrices and
Kernels and Small Vibrations
of Mechanical Systems
(Russian), 2nd ed., 359pp.
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A history of sign variation and total positivity

Whitney (1952): The totally positive matrices are dense in the totally
nonnegative matrices.

Aissen, Schoenberg, Whitney (1952): Let r1, · · ·, rn ∈ C. Then r1, · · ·, rn
are all nonnegative reals iff sλ(r1, · · ·, rn) ≥ 0 for all partitions λ.

Karlin (1968): Total Positivity, Volume I, 576pp.
Lusztig (1994) constructed a theory of total positivity for G and G/P.

Rietsch (1997) and Marsh, Rietsch (2004) developed the theory for G/P.
Fomin and Zelevinsky (2000s) introduced cluster algebras.
Postnikov (2006) and others studied the combinatorics of Gr≥0k,n.
Kodama, Williams (2014): A τ -function τ =

∑
I∈([n]k ) ∆I (V )sλ(I )

associated to V ∈ Grk,n gives a regular soliton solution to the KP equation
iff V is totally nonnegative.
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How close is a subspace to being totally positive?

Can we determine maxv∈V var(v) and maxv∈V \{0} var(v) from the
Plücker coordinates of V ?

Theorem (Karp (2015))

Let V ∈ Grk,n and s ≥ 0. Then var(v) ≤ k − 1 + s for all nonzero v ∈ V
iff

var((∆J∪{i}(V ))i /∈J) ≤ s

for all J ∈
( [n]
k−1
)

such that the sequence above is not identically zero.

e.g. Let V :=

[
1 0 −2 4
0 2 1 1

]
∈ Gr2,4 and s := 1. The fact that

var(v) ≤ 2 for all v ∈ V \ {0} is equivalent to the fact that the sequences

(∆{1,2},∆{1,3},∆{1,4}) = (2, 1, 1), (∆{1,3},∆{2,3},∆{3,4}) = (1, 4,−6),

(∆{1,2},∆{2,3},∆{2,4}) = (2, 4,−8), (∆{1,4},∆{2,4},∆{3,4}) = (1,−8,−6)

each change sign at most once.
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How close is a subspace to being totally nonnegative?

Theorem (Karp (2015))

Let V ∈ Grk,n and s ≥ 0.
(i) If var(v) ≤ k − 1 + s for all v ∈ V , then

var((∆J∪{i}(V ))i /∈J) ≤ s for all J ∈
( [n]
k−1
)
.

The converse holds if V is generic (i.e. ∆I (V ) 6= 0 for all I ).
(ii) We can perturb V into a generic W with max

v∈V
var(v) = max

v∈W
var(v).

0.1 0.01

e.g. Consider

[
1 0 1 0
0 1 0 1

]
 

[
1 0 1 0
0 1 0.1 1

]
 

[
1 0 1 0.01
0 1 0.1 1.001

]
.

The 4 sequences of Plücker coordinates are

(∆{1,2},∆{1,3},∆{1,4}) = (1, 0
0.1

, 1
1.001

), (∆{1,3},∆{2,3},∆{3,4}) = (0
0.1

,−1, 1),

(∆{1,2},∆{2,3},∆{2,4}) = (1,−1, 0
−0.01

), (∆{1,4},∆{2,4},∆{3,4}) = (1
1.001

, 0
−0.01

, 1).

Note: var is increasing while var is decreasing with respect to genericity.
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Oriented matroids

An oriented matroid is a combinatorial abstraction of a real subspace,
which records the Plücker coordinates up to sign, or equivalently the
vectors up to sign.

These results generalize to oriented matroids.
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Amplituhedra

Let Z : Rn → Rk+m be a linear map, and ZGr : Gr≥0k,n → Grk,k+m the

map it induces on Gr≥0k,n. In the case that all (k + m)× (k + m) minors of

Z are positive, the image ZGr(Gr≥0k,n) is called a (tree) amplituhedron.

e.g. Let Z :=

 1 1 1 1 1
−2 −1 0 1 2
4 1 1 1 4

 and k := 1. Then ZGr(Gr≥01,5) equals

{
(1 : −2a− b + d + 2e :

4a + b + c + d + 4e)
:
a, b, c , d , e ≥ 0,

a + b + c + d + e = 1

}
⊆ P2.

v1 = (−2, 4)

v2 = (−1, 1)

v3 = (0, 0)

v4 = (1, 1)

v5 = (2, 4)
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Amplituhedra

When k = 1, amplituhedra are precisely cyclic polytopes. Cyclic
polytopes achieve the maximum number of faces (in every dimension) in
Stanley’s upper bound theorem (1975).

Lam (2015) proposed relaxing the positivity condition on Z , and called
the more general class of images ZGr(Gr≥0k,n) Grassmann polytopes. When
k = 1, Grassmann polytopes are precisely polytopes.

Arkani-Hamed and Trnka (2013) introduced amplituhedra in order to
study scattering amplitudes, which they compute as an integral over the
amplituhedron ZGr(Gr≥0k,n) when m = 4.

A scattering amplitude is a complex number whose modulus squared is
the probability of observing a certain scattering process, e.g. a process
involving n gluons, k + 2 of negative helicity and n − k − 2 of positive
helicity.
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When is ZGr well defined?

Recall that Z : Rn → Rk+m is a linear map, which induces a map
ZGr : Gr≥0k,n → Grk,k+m on Gr≥0k,n. How do we know that ZGr is well defined

on Gr≥0k,n, i.e. dim(ZGr(V )) = k for all V ∈ Gr≥0k,n?

Note: dim(ZGr(V )) = k ⇐⇒ Z (v) 6= 0 for all nonzero v ∈ V .

Lemma⋃
Gr≥0k,n = {v ∈ Rn : var(v) ≤ k − 1}.

⊆ follows from Gantmakher and Krein’s theorem. ⊇ is an exercise.

(2, 0, 5,−1,−4,−1, 3) ∈

2 0 5 0 0 0 0
0 0 0 −1 −4 −1 0
0 0 0 0 0 0 3

 ∈ Gr≥03,7
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When is ZGr well defined?

Theorem (Karp (2015))

Let Z : Rn → Rk+m have rank k + m, and W ∈ Grk+m,n be the row span
of Z . The following are equivalent:
(i) the map ZGr is well defined, i.e. dim(ZGr(V )) = k for all V ∈ Gr≥0k,n;

(ii) var(v) ≥ k for all nonzero v ∈ ker(Z ) = W⊥; and

(iii) var((∆J\{i}(W ))i∈J) ≤ m for all J ∈
( [n]
k+m+1

)
with dim(WJ) = k +m.

e.g. Let Z :=

[
2 −1 1 1
1 2 −1 3

]
, so n = 4, k + m = 2. The 4 relevant

sequences of Plücker coordinates (as J ranges over
([4]
3

)
) are

(∆{2,3},∆{1,3},∆{1,2}) = (−1,−3, 5), (∆{3,4},∆{1,4},∆{1,3}) = (4, 5,−3),

(∆{2,4},∆{1,4},∆{1,2}) = (−5, 5, 5), (∆{3,4},∆{2,4},∆{2,3}) = (4,−5,−1).

The maximum number of sign changes among these 4 sequences is 1,
which is at most 2− k iff k ≤ 1. Hence ZGr is well defined iff k ≤ 1.
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When is ZGr well defined?

Theorem (Karp (2015))

Let Z : Rn → Rk+m have rank k + m, and W ∈ Grk+m,n be the row span
of Z . The following are equivalent:
(i) the map ZGr is well defined, i.e. dim(ZGr(V )) = k for all V ∈ Gr≥0k,n;

(ii) var(v) ≥ k for all nonzero v ∈ ker(Z ) = W⊥; and

(iii) var((∆J\{i}(W ))i∈J) ≤ m for all J ∈
( [n]
k+m+1

)
with dim(WJ) = k +m.

If m = 0, then (ii) ⇔ (iii) is a ‘dual version’ of Gantmakher and Krein’s
theorem: V ∈ Grk,n is totally positive iff var(v) ≥ k for all v ∈ V⊥ \ {0}.

Arkani-Hamed and Trnka’s condition on Z (for Z to define an
amplituhedron) is that its (k + m)× (k + m) minors are all positive. In
this case, ZGr is well defined by either (ii) or (iii).

Lam’s condition on Z (for Z to define a Grassmann polytope) is that W
has a totally positive k-dimensional subspace. This is sufficient by (ii).

Open problem: is Lam’s condition also necessary?
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Further directions

Is there an efficient way to test whether a given V ∈ Grk,n is totally
positive using the data of sign patterns? (For Plücker coordinates, in order
to test whether V is totally positive, we only need to check that some
particular k(n − k) Plücker coordinates are positive, not all

(n
k

)
.)

Is there a simple way to index the cell decomposition of Gr≥0k,n using the
data of sign patterns?

Is there a nice stratification of the subset of the Grassmannian

{V ∈ Grk,n : var(x) ≤ k − 1 + s for all x ∈ V },
for fixed s? (If s = 0, this is Gr≥0k,n.)

I determined when ZGr is well defined on the totally positive
Grassmannian Gr>0

k,n. When is ZGr well defined on a given cell of Gr≥0k,n?

Thank you!
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