Wronskians, total positivity, and real Schubert calculus

Slides available at snkarp.github.io

Steven N. Karp (University of Notre Dame) arXiv:2110.02301

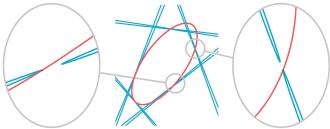
> September 6th, 2022 University of Notre Dame

Steiner's conic problem (1848)

- How many conics are tangent to 5 given conics? 7776.
 de Jonquières (1859): 3264.
- Fulton (1996): "The question of how many solutions of real equations can be real is still very much open, particularly for enumerative problems."

• Fulton (1986); Ronga, Tognoli, Vust (1997): All 3264 conics can be real.

3264 Conics in a Second



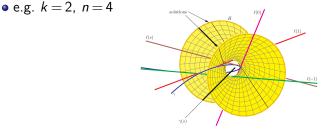
• Breiding, Sturmfels, and Timme (2020) found 5 explicit such conics.

Shapiro–Shapiro conjecture (1995)

Let Gr_{k,n}(ℂ) be the *Grassmannian* of all *k*-dimensional subspaces of ℂⁿ.
Schubert (1886): Fix generic elements W₁,..., W_{k(n-k)} ∈ Gr_{k,n}(ℂ). Then there are d_{k,n} elements U ∈ Gr_{n-k,n}(ℂ) such that

 $U \cap W_i \neq \{0\}$ for all i, where $d_{k,n} := \frac{1! 2! \cdots (k-1)!}{(n-k)! (n-k+1)! \cdots (n-1)!} (k(n-k))!$.

• B. and M. Shapiro conjectured that if each W_i is an osculating plane to the rational normal curve $\gamma(x) := (1, x, \dots, x^{n-1})$, then every U is real.



F. Sottile, "Frontiers of reality in Schubert calculus"

• Bürgisser, Lerario (2020): a 'random' problem has $\approx \sqrt{d_{k,n}}$ real solutions.

Steven N. Karp (Notre Dame) Wronskians, total positivity, and real Schubert calculus September 6th, 2022 3 / 10

Wronski map

• The Wronskian of k linearly independent functions $f_1, \ldots, f_k : \mathbb{C} \to \mathbb{C}$ is

$$\mathsf{Wr}(f_1,\ldots,f_k) := \mathsf{det} \begin{bmatrix} f_1 & \cdots & f_k \\ f'_1 & \cdots & f'_k \\ \vdots & \ddots & \vdots \\ f_1^{(k-1)} & \cdots & f_k^{(k-1)} \end{bmatrix}$$

• e.g.
$$\operatorname{Wr}(f,g) = \det \begin{bmatrix} f & g \\ f' & g' \end{bmatrix} = fg' - f'g = f^2(\frac{g}{f})'.$$

• Let $V := \operatorname{span}(f_1, \ldots, f_k)$. Then $\operatorname{Wr}(V)$ is well-defined up to a scalar. Its zeros are points in \mathbb{C} where some nonzero $f \in V$ has a zero of order k.

• The monic linear differential operator $\mathcal L$ of order k with kernel V is

$$\mathcal{L}(g) = \frac{\mathsf{Wr}(f_1, \ldots, f_k, g)}{\mathsf{Wr}(f_1, \ldots, f_k)} = \frac{d^k g}{dx^k} + \cdots$$

• We identify \mathbb{C}^n with the space of polynomials of degree at most n-1:

$$\mathbb{C}^n \leftrightarrow \mathbb{C}[x]_{\leq n-1}, \quad (a_1, \ldots, a_n) \leftrightarrow a_1 + a_2 x + \cdots + a_n x^{n-1}$$

We obtain the Wronski map $Wr : Gr_{k,n}(\mathbb{C}) \to \mathbb{P}(\mathbb{C}[x]_{\leq k(n-k)}).$

Wronskian formulation

Conjecture (Shapiro-Shapiro (1995))

Let $V \in Gr_{k,n}(\mathbb{C})$. If all complex zeros of Wr(V) are real, then V is real.

- e.g. If $Wr(V) := (x + a)^2(x + b)^2$, the two solutions $V \in Gr_{2,4}(\mathbb{C})$ are span((x + a)(x + b), x(x + a)(x + b)) and span $((x + a)^3, (x + b)^3)$.
- Sottile (1999) proved the conjecture asymptotically.
- Eremenko and Gabrielov (2002) proved the conjecture for k = 2, n 2.
 Mukhin, Tarasov, and Varchenko (2009) proved the conjecture via the *Bethe ansatz*. The proof was simplified by Purbhoo (2022).
- Purbhoo (2010) proved the Shapiro-Shapiro conjecture for the orthogonal Grassmannian. Analogues due to Sottile for the Lagrangian Grassmannian and the complete flag variety remain open.
- Levinson and Purbhoo (2021) proved the Shapiro–Shapiro conjecture topologically, and extended it to Wronskians with nonreal zeros.

5 / 10

Secant conjecture and disconjugacy conjecture

Conjecture (García-Puente, Hein, Hillar, Martín del Campo, Ruffo, Sottile, Teitler (2012))

Let $W_1, \ldots, W_{k(n-k)} \in \operatorname{Gr}_{k,n}(\mathbb{C})$, where each W_i is spanned by k points on the rational normal curve γ , such that the points chosen for each W_i lie in k(n-k) disjoint intervals of \mathbb{R} . Then all $U \in \operatorname{Gr}_{n-k,n}(\mathbb{C})$ satisfying

$$U \cap W_i \neq \{0\}$$
 for all i

are real.

• Eremenko (2015) showed that the secant conjecture is implied by:

Conjecture (Eremenko (2015))

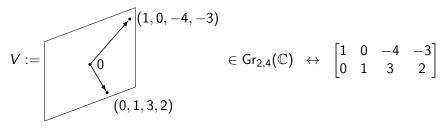
Let $V \in Gr_{k,n}(\mathbb{R})$. If all zeros of Wr(V) are real, then every nonzero $f \in V$ has at most k - 1 zeros in any interval of \mathbb{R} on which Wr(V) is nonzero.

• The case k = 2 of both conjectures was proved by Eremenko, Gabrielov, Shapiro, and Vainshtein (2006).

Total positivity

• Given $V \in \operatorname{Gr}_{k,n}(\mathbb{C})$, take a $k \times n$ matrix whose rows span V. For k-element subsets I of $\{1, \ldots, n\}$, let $\Delta_I(V)$ be the $k \times k$ minor located in columns I. The $\Delta_I(V)$ are well-defined up to a scalar, and give projective coordinates on $\operatorname{Gr}_{k,n}(\mathbb{C})$, called *Plücker coordinates*.

• e.g.



 $\Delta_{12}=1, \ \ \Delta_{13}=3, \ \ \Delta_{14}=2, \ \ \Delta_{23}=4, \ \ \Delta_{24}=3, \ \ \Delta_{34}=1$

• We say that $V \in \operatorname{Gr}_{k,n}(\mathbb{C})$ is totally nonnegative if $\Delta_I(V) \ge 0$ for all *I*, and totally positive if $\Delta_I(V) > 0$ for all *I*.

7 / 10

Conjecture (Eremenko (2015))

Let $V \in Gr_{k,n}(\mathbb{R})$. If all zeros of Wr(V) are real, then every nonzero $f \in V$ has at most k - 1 zeros in any interval of \mathbb{R} on which Wr(V) is nonzero.

Conjecture (Mukhin, Tarasov (2017); Karp (2021))

Let $V \in \operatorname{Gr}_{k,n}(\mathbb{R})$.

(i) If all zeros of Wr(V) lie in $[-\infty, 0]$, then V is totally nonnegative. (ii) If all zeros of Wr(V) lie in $(-\infty, 0)$, then V is totally positive.

• e.g. Let $Wr(V) := (x + a)^2(x + b)^2$. If a, b > 0, then the two solutions

 $\begin{bmatrix} ab & a+b & 1 & 0 \\ 0 & ab & a+b & 1 \end{bmatrix} \text{ and } \begin{bmatrix} a^3 & 3a^2 & 3a & 1 \\ b^3 & 3b^2 & 3b & 1 \end{bmatrix} \text{ are totally positive.}$

Theorem (Karp (2021))

The two conjectures above are equivalent. They imply a totally positive version of the secant conjecture.

Complete flag variety

• The equivalence of the two conjectures follows from a new description of the totally positive part of the *complete flag variety* $Fl_n(\mathbb{R})$.

• The elements of $\mathsf{Fl}_n(\mathbb{R})$ are tuples (V_1,\ldots,V_{n-1}) , where

 $V_1 \subset \cdots \subset V_{n-1} \subset \mathbb{R}^n$ and $\dim(V_k) = k$ for all $1 \le k \le n-1$.

We say that (V_1, \ldots, V_{n-1}) is *totally nonnegative* if all its Plücker coordinates are nonnegative, i.e., $V_k \in Gr_{k,n}(\mathbb{R})$ is totally nonnegative for all $1 \le k \le n-1$. We similarly define *totally positive* complete flags.

Theorem (Karp (2021))

(i) The complete flag (V_1, \ldots, V_{n-1}) is totally nonnegative if and only if $Wr(V_k)$ is nonzero on the interval $(0, \infty)$, for all $1 \le k \le n-1$. (ii) The complete flag (V_1, \ldots, V_{n-1}) totally positive if and only if $Wr(V_k)$ is nonzero on the interval $[0, \infty]$, for all $1 \le k \le n-1$.

• In the language of Chebyshev systems, the conclusions above say that (V_1, \ldots, V_{n-1}) forms a *Markov system* (or *ECT-system*). Such systems also appear in the study of disconjugate linear differential equations.

Complete flag variety

• e.g. Let n := 3, and let $(V_1, V_2) \in \mathsf{Fl}_3(\mathbb{R})$ be represented by the matrix $\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}, \quad \text{with} \quad \begin{array}{l} \Delta_1 = 1, \ \Delta_2 = a, \ \Delta_3 = b, \\ \Delta_{12} = 1, \ \Delta_{13} = c, \ \Delta_{23} = ac - b. \end{array}$

Hence (V_1, V_2) is totally positive if and only if a, b, c, ac - b > 0. Now,

$$Wr(V_1) = Wr(1 + ax + bx^2) = 1 + ax + bx^2,$$

 $Wr(V_2) = Wr(1 + ax + bx^2, x + cx^2) = 1 + 2cx + (ac - b)x^2.$

The Theorem says that a, b, c, ac - b > 0 if and only if $Wr(V_1)$ and $Wr(V_2)$ are positive on $[0, \infty]$. The forward direction is immediate, and we can verify the reverse direction by a calculation.

• In general, the reverse direction follows using a topological argument.

• The Theorem also gives new total nonnegativity and total positivity tests for $Fl_n(\mathbb{R})$ using the coefficients of the Wronskians. These lead to new total nonnegativity and total positivity tests for $GL_n(\mathbb{R})$.