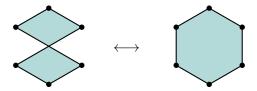
Gradient flows on totally nonnegative flag varieties

Slides available at snkarp.github.io

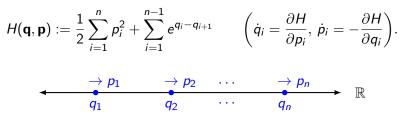


Steven N. Karp (University of Notre Dame) joint work with Anthony M. Bloch arXiv:2109.04558, 2304.10697

> February 6, 2024 Purdue University

Toda lattice

• The Toda lattice (1967) is a Hamiltonian system with



• Flaschka (1974) expressed the Toda flow in *Lax form*: $\dot{L} = [L, \pi_{skew}(L)]$, where *L* is an $n \times n$ symmetric tridiagonal matrix with positive subdiagonal.

$$L = \begin{bmatrix} b_1 & a_1 & 0 \\ a_1 & b_2 & a_2 \\ 0 & a_2 & b_3 \end{bmatrix}, \quad \pi_{skew}(L) = \begin{bmatrix} 0 & -a_1 & 0 \\ a_1 & 0 & -a_2 \\ 0 & a_2 & 0 \end{bmatrix}, \quad a_i = \frac{1}{2}e^{\frac{q_i - q_{i+1}}{2}}, \quad b_i = -\frac{1}{2}p_i.$$

• The eigenvalues of L are distinct and invariant under the Toda flow. As $t \to \pm \infty$, L approaches a diagonal matrix with sorted diagonal entries.

Explicit solution of the Toda lattice flow

• The Toda flow evolves on the *isospectral manifold* $\mathcal{J}^{>0}_{\lambda}$ of all tridiagonal L with fixed spectrum $\lambda = (\lambda_1 > \cdots > \lambda_n)$ and all off-diagonal $a_i > 0$.

Theorem (Moser (1975))

The map which sends $L \in \mathcal{J}_{\lambda}^{>0}$ to the vector (u_1, \ldots, u_n) of first entries of its normalized eigenvectors is a homeomorphism onto $S_{>0}^{n-1}$. The Toda lattice flow is a gradient flow on projective space $\mathbb{P}^{n-1}(\mathbb{R})$:

$$\dot{u}_i = \lambda_i u_i$$
 for $1 \le i \le n$.

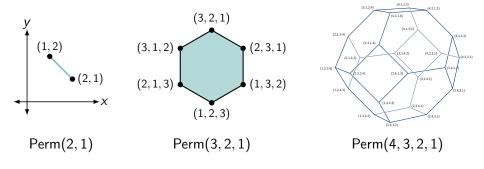
• e.g.
$$\mathcal{L} = \frac{1}{33} \begin{bmatrix} 50 & 28 & 0 \\ 28 & 81 & 8 \\ 0 & 8 & 67 \end{bmatrix} = \begin{bmatrix} \frac{16}{33} & \frac{7}{33} & \frac{28}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{16}{33} & \frac{28}{33} & \frac{7}{33} \\ \frac{7}{33} & -\frac{32}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33} \end{bmatrix} \in \mathcal{J}_{(3,2,1)}^{>0}$$

 $\mapsto (u_1, u_2, u_3) = (\frac{16}{33}, \frac{7}{33}, \frac{28}{33}) \in S_{>0}^2.$

• Let $\mathcal{J}_{\boldsymbol{\lambda}}^{\geq 0}$ denote the closure of $\mathcal{J}_{\boldsymbol{\lambda}}^{>0}$, where we allow $a_i = 0$.

Isospectral manifold $\mathcal{J}_{\boldsymbol{\lambda}}^{\geq 0}$ and the permutohedron

• Let $\operatorname{Perm}(\lambda_1, \ldots, \lambda_n)$ be the polytope in \mathbb{R}^n whose vertices are all n! permutations of $(\lambda_1, \ldots, \lambda_n)$, where $\lambda_1 > \cdots > \lambda_n$.



Theorem (Tomei (1984))

The space $\mathcal{J}_{\lambda}^{\geq 0}$ is homeomorphic (as a stratified space) to Perm (λ) .

Steven N. Karp (Notre Dame) G

Gradient flows on totally nonnegative flag varieties

Moment map and Schur–Horn theorem

• Let μ be the *moment map* sending a matrix to its diagonal.

• e.g.
$$\mu\left(\frac{1}{33}\begin{bmatrix}50 & 28 & 0\\28 & 81 & 8\\0 & 8 & 67\end{bmatrix}\right) = (\frac{50}{33}, \frac{81}{33}, \frac{67}{33}) \in \mathbb{R}^3.$$

$$(3,1,2)$$

$$(3,1,2)$$

$$(3,1,2)$$

$$(3,1,2)$$

$$(3,1,2)$$

$$(3,1,2)$$

$$(3,1,2)$$

$$(3,1,2)$$

$$(1,3,2)$$

$$(1,2,3)$$

Theorem (Schur (1923), Horn (1953))

The map μ sends the space of $n \times n$ symmetric matrices with eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ onto $\text{Perm}(\lambda_1, \ldots, \lambda_n)$.

• However, $\mu: \mathcal{J}_{\boldsymbol{\lambda}}^{\geq 0} \to \mathsf{Perm}(\boldsymbol{\lambda})$ is neither injective nor surjective.

• e.g.
$$\operatorname{Perm}(3,2,1) = \mu(\mathcal{J}_{(3,2,1)}^{\geq 0}) =$$

(2 2 1)

Twisted moment map

Theorem (Bloch, Flaschka, Ratiu (1990))

Let Λ be the diagonal matrix with diagonal λ . The 'twisted moment map'

$$L = g \Lambda g^{-1} \mapsto \mu(g^{-1} \Lambda g) \qquad (g \in O_n)$$

restricts to a homeomorphism $\mathcal{J}_{\lambda}^{\geq 0} \xrightarrow{\cong} \mathsf{Perm}(\lambda)$.

• e.g.
$$\mathcal{L} = \begin{bmatrix} \frac{16}{33} & \frac{7}{33} & \frac{28}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{16}{3} & \frac{28}{33} & \frac{7}{33} \\ \frac{7}{33} & \frac{4}{33} & -\frac{32}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33} \end{bmatrix}$$

 $\mapsto \mu \left(\begin{bmatrix} \frac{16}{33} & \frac{28}{33} & \frac{7}{33} \\ \frac{7}{33} & \frac{4}{33} & -\frac{32}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{16}{33} & \frac{7}{33} & \frac{28}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33} \end{bmatrix} \right) = \left(\frac{795}{363}, \frac{401}{363}, \frac{982}{363} \right).$

• The proof defines a map $L = g \Lambda g^{-1} \mapsto g^{-1} \Lambda g$ on $\mathcal{J}_{\lambda}^{\geq 0}$, where $g \in O_n$ depends smoothly on L. We use total positivity to (re-)construct this map.

Totally nonnegative flag variety

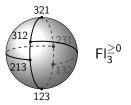
• The complete flag variety $\mathsf{Fl}_n(\mathbb{C})$ consists of all $V = (V_1, \ldots, V_{n-1})$ with

 $0 \subset V_1 \subset \cdots \subset V_{n-1} \subset \mathbb{C}^n$ and $\dim(V_k) = k$ for all k.

• We say $g \in GL_n(\mathbb{C})$ represents V if each V_k is spanned by the first k columns of g. We call V totally positive (denoted $V \in Fl_n^{>0}$) if we can find a g whose left-justified minors are all positive. We similarly define $Fl_n^{\geq 0}$.

• e.g.
$$\begin{bmatrix} \frac{16}{33} & \frac{7}{33} & \frac{28}{33}\\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33}\\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\ \frac{7}{4} & 1 & 0\\ \frac{7}{16} & \frac{17}{4} & 1 \end{bmatrix} \in \mathsf{Fl}_3^{>0}.$$

• Lusztig (1994), Rietsch (1999): $FI_n^{\geq 0}$ has a cell decomposition.



Contractive flow and topology of $Fl_n^{\geq 0}$

Theorem (Galashin, Karp, Lam (2019))

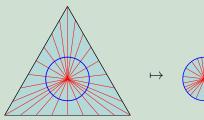
The space $\operatorname{Fl}_n^{\geq 0}$ is homeomorphic to a closed Euclidean ball.

Proof

Let M be the $n \times n$ tridiagonal matrix

$$\begin{bmatrix} 0 & 1 & 0 & \cdots \\ 1 & 0 & 1 & \cdots \\ 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$
. Then $V \mapsto \exp(tM)V$

for $t \in [0,\infty]$ contracts $\mathsf{Fl}_n^{\geq 0}$ onto a unique attractor in the interior.



14

Totally nonnegative adjoint orbit

• Let U_n be the group of $n \times n$ unitary matrices and u_n its Lie algebra of $n \times n$ skew-Hermitian matrices. For $\lambda_1 > \cdots > \lambda_n$, consider the adjoint orbit

 $\mathcal{O}_{\boldsymbol{\lambda}} := \{g(\mathrm{i}\Lambda)g^{-1} : g \in \mathsf{U}_n\} \subseteq \mathfrak{u}_n, \quad \text{where } \Lambda := \mathsf{Diag}(\lambda_1, \dots, \lambda_n).$

We have the isomorphism

$$\mathcal{O}_{\boldsymbol{\lambda}} \xrightarrow{\cong} \mathsf{Fl}_n(\mathbb{C}), \quad g(\mathrm{i}\Lambda)g^{-1} \mapsto g,$$

sending a matrix to its flag of eigenvectors ordered by descending eigenvalue.

• We define $\mathcal{O}_{\lambda}^{>0}$ and $\mathcal{O}_{\overline{\lambda}}^{\geq 0}$ to be the preimages of $\mathsf{Fl}_n^{>0}$ and $\mathsf{Fl}_n^{\geq 0}$.

• e.g.
$$\begin{bmatrix} \frac{16}{33} & \frac{7}{33} & \frac{28}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33} \end{bmatrix} \begin{bmatrix} 3i & 0 & 0 \\ 0 & 2i & 0 \\ 0 & 0 & i \end{bmatrix} \begin{bmatrix} \frac{16}{33} & \frac{28}{33} & \frac{7}{33} \\ \frac{7}{33} & \frac{4}{33} & -\frac{32}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33} \end{bmatrix} = \frac{i}{33} \begin{bmatrix} 50 & 28 & 0 \\ 28 & 81 & 8 \\ 0 & 8 & 67 \end{bmatrix} \in \mathcal{O}_{(3,2,1)}^{>0}.$$

Proposition (Bloch, Karp (2023))

The tridiagonal subset of $\mathcal{O}_{\lambda}^{\geq 0}$ is precisely $i\mathcal{J}_{\lambda}^{\geq 0}$ (i.e. where all off-diagonal entries lie on the nonnegative imaginary axis).

Steven N. Karp (Notre Dame) Gradient flows on totally nonnegative flag varieties

Gradient flows on adjoint orbits

• We consider the gradient flow on \mathcal{O}_{λ} of the function $L \mapsto 2n \operatorname{tr}(LN)$, where $N \in \mathfrak{u}_n$. We work in the Kähler, normal, and induced metrics.

- Kähler metric: the gradient flow is $V(t) = \exp(tiN)V$ on $\operatorname{Fl}_n(\mathbb{C}) \cong \mathcal{O}_{\lambda}$.
- Normal metric: the gradient flow is $\dot{L} = [L, [L, N]]$ on \mathcal{O}_{λ} .
- Induced metric: the gradient flow is $\dot{L} = [L, \operatorname{ad}_{L}^{-1}(N)]$ on \mathcal{O}_{λ} .

• We say the flow *strictly preserves positivity* if trajectories starting in $\mathcal{O}_{\lambda}^{\geq 0}$ lie in $\mathcal{O}_{\lambda}^{>0}$ for all positive time. If so, we obtain a contractive flow.

Theorem (Bloch, Karp (2023))

(i) Kähler metric: the gradient flow on \mathcal{O}_{λ} with respect to N strictly preserves positivity if and only if $i N \in \mathcal{J}_{\mu}^{>0}$ for some μ .

(ii) Normal metric: no gradient flow on \mathcal{O}_{λ} strictly preserves positivity. (iii) Induced metric: if n = 3 and $\frac{\lambda_1 - \lambda_2}{\lambda_2 - \lambda_3} \notin [\frac{1}{2 + 2\sqrt{2}}, 2 + 2\sqrt{2}]$, then no gradient flow on \mathcal{O}_{λ} in the induced metric strictly preserves positivity.

Twist map and Toda flows

• Every element of $\operatorname{Fl}_n^{\geq 0}$ is represented by a unique $g \in \bigcup_n$ whose leftjustified minors are all nonnegative. Let $\vartheta(g) := ((-1)^{i+j}(g^{-1})_{i,j})_{1 \leq i, j \leq n}$.

• e.g.
$$\vartheta \left(\frac{1}{33} \begin{bmatrix} 16 & -7 & 28 \\ 28 & -4 & -17 \\ 7 & 32 & 4 \end{bmatrix} \right) = \frac{1}{33} \begin{bmatrix} 16 & -28 & 7 \\ 7 & -4 & -32 \\ 28 & 17 & 4 \end{bmatrix}$$

Theorem (Bloch, Karp (2023))

The twist map ϑ is an involutive diffeomorphism $\mathsf{Fl}_n^{\geq 0} \xrightarrow{\cong} \mathsf{Fl}_n^{\geq 0}$.

• The map ϑ induces a map on $\mathcal{O}_{\lambda}^{\geq 0}$. Restricting to $i\mathcal{J}_{\lambda}^{\geq 0}$, we recover the map of Bloch, Flaschka, and Ratiu on $\mathcal{J}_{\lambda}^{\geq 0}$ (i.e. $L = g\Lambda g^{-1} \mapsto g^{-1}\Lambda g$).

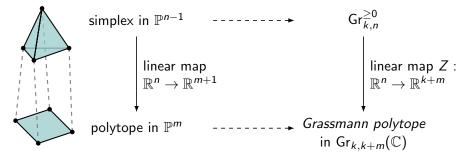
Theorem (Bloch, Karp (2023))

The full symmetric Toda flow $\dot{L} = [L, \pi_{u_n}(-iL)]$ on \mathcal{O}_{λ} weakly preserves positivity in both time directions. It is the twisted gradient flow with respect to $N = -i\Lambda$ in the Kähler metric.

Grassmann polytopes and amplituhedra

• The Grassmannian $\operatorname{Gr}_{k,n}(\mathbb{C})$ is the set of all k-dimensional subspaces of \mathbb{C}^n . Its totally nonnegative part $\operatorname{Gr}_{k,n}^{\geq 0}$ is the projection of $\operatorname{Fl}_n^{\geq 0}$. If k = 1 then $\operatorname{Gr}_{1,n}^{\geq 0}$ is a simplex in \mathbb{P}^{n-1} .

• A Grassmann polytope is the Grassmannian analogue of a polytope.



• When Z is *positive*, the Grassmann polytope is called an *amplituhedron* $A_{n,k,m}(Z)$. It is the Grassmannian analogue of a cyclic polytope.

12 / 14

Gradient flows on amplituhedra

• The amplituhedron $\mathcal{A}_{n,k,m}(Z)$ encodes a complex differential form on $\operatorname{Gr}_{k,k+m}(\mathbb{C})$. When m = 4, this form is (conjecturally) the tree-level scattering amplitude in planar $\mathcal{N} = 4$ supersymmetric Yang–Mills theory. • Intuition from physics: the combinatorics and geometry of $\mathcal{A}_{n,k,m}(Z)$

(e.g. triangulations, dualities) encode properties of the differential form.

Theorem (Bloch, Karp (2023))

Every 'twisted Vandermonde' amplituhedron $A_{n,k,m}(Z)$ admits a contractive gradient flow, and is homeomorphic to a closed Euclidean ball. This includes all amplituhedra with $n - k - m \leq 2$.

• It is expected that every amplituhedron is homeomorphic to a closed ball.

Future directions

- Find contractive flows on the cell closures of $FI_n^{\geq 0}$.
- Find contractive flows on all amplituhedra.
- Generalize the connection to Toda flows to the periodic Toda lattice.
- Study Toda flows projected onto permutohedra.

Thank you!