Sign variation, the Grassmannian, and total positivity

arXiv:1503. 05622
Slides available at math.berkeley.edu/~skarp

Steven N. Karp, UC Berkeley

April 22nd, 2016
Texas State University, San Marcos

Alternating curves

Proposition

Let $f:[0,1] \rightarrow \mathbb{R}^{k}$ be a continuous curve. Then no hyperplane through 0 contains k points on the curve iff the determinants

$$
\operatorname{det}\left[f\left(t_{1}\right)|\cdots| f\left(t_{k}\right)\right] \quad\left(0 \leq t_{1}<\cdots<t_{k} \leq 1\right)
$$

are either all positive or all negative.

Proof

Since $\left\{\left(t_{1}, \cdots, t_{k}\right) \in \mathbb{R}^{k}: 0 \leq t_{1}<\cdots<t_{k} \leq 1\right\} \subseteq \mathbb{R}^{k}$ is connected, its image $\left\{\operatorname{det}\left[f\left(t_{1}\right)|\cdots| f\left(t_{k}\right)\right]: 0 \leq t_{1}<\cdots<t_{k} \leq 1\right\} \subseteq \mathbb{R}$ is connected.

- How can we discretize this result?

Alternating curves

Theorem (Gantmakher, Krein (1950); Schoenberg, Whitney (1951))

Let $x_{1}, \cdots, x_{n} \in \mathbb{R}^{k}$ span \mathbb{R}^{k}. Then the following are equivalent:
(i) the piecewise-linear path x_{1}, \cdots, x_{n} crosses any hyperplane through 0 at most $k-1$ times;
(ii) the sequence $\left(a^{T} x_{1}, \cdots, a^{T} x_{n}\right)$ changes sign at most $k-1$ times for all $a \in \mathbb{R}^{n}$; and
(iii) the $k \times k$ minors of the $k \times n$ matrix $\left[x_{1}|\cdots| x_{n}\right]$ are either all nonnegative or all nonpositive.

- e.g.

- The set of such point configurations $\left(x_{1}, \cdots, x_{n}\right)$, modulo linear automorphisms of \mathbb{R}^{k}, is the totally nonnegative Grassmannian.
- Can we characterize the maximum number of hyperplane crossings of the path x_{1}, \cdots, x_{n} in terms of the $k \times k$ minors of $\left[x_{1}|\cdots| x_{n}\right]$?

The Grassmannian $\mathrm{Gr}_{k, n}$

- The Grassmannian $\mathrm{Gr}_{k, n}$ is the set of k-dimensional subspaces V of \mathbb{R}^{n}.

$$
\Delta_{\{1,2\}}=1, \Delta_{\{1,3\}}=3, \Delta_{\{1,4\}}=2, \Delta_{\{2,3\}}=4, \Delta_{\{2,4\}}=3, \Delta_{\{3,4\}}=1
$$

- Given $V \in \mathrm{Gr}_{k, n}$ in the form of a $k \times n$ matrix, for $I \in\binom{[n]}{k}$ let $\Delta_{I}(V)$ be the $k \times k$ minor of V with columns l. The Plücker coordinates $\Delta_{l}(V)$ are well defined up to multiplication by a global nonzero constant.
- We say that $V \in \mathrm{Gr}_{k, n}$ is totally nonnegative if $\Delta_{I}(V) \geq 0$ for all $I \in\binom{[n]}{k}$, and totally positive if $\Delta_{I}(V)>0$ for all $I \in\binom{[n]}{k}$. Denote the set totally nonnegative V by $\mathrm{Gr}_{k, n}^{\geq 0}$, and the set of totally positive V by $\mathrm{Gr}_{k, n}^{>0}$.

Sign variation

- For $v \in \mathbb{R}^{n}$, let $\operatorname{var}(v)$ be the number of sign changes in the sequence $\left(v_{1}, v_{2}, \cdots, v_{n}\right)$, ignoring any zeros.

$$
\operatorname{var}(1,-4,0,-3,6,0,-1)=\operatorname{var}(\overparen{1,-4},-3,6,-1)=3
$$

Similarly, let $\overline{\operatorname{var}}(v)$ be the maximum of $\operatorname{var}(w)$ over all $w \in \mathbb{R}^{n}$ obtained from v by changing zero components of w.

$$
\operatorname{var}(\overparen{1,-4,0,-3,6,0,-1})=5
$$

Theorem (Gantmakher, Krein (1950))

Let $V \in \mathrm{Gr}_{k, n}$.
(i) V is totally nonnegative iff $\operatorname{var}(v) \leq k-1$ for all $v \in V$.
(ii) V is totally positive iff $\overline{\operatorname{var}}(v) \leq k-1$ for all nonzero $v \in V$.

- e.g. $\left[\begin{array}{cccc}1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2\end{array}\right] \in \mathrm{Gr}_{2,4}>0$.
- Note that every $V \in \operatorname{Gr}_{k, n}$ contains a vector v with $\operatorname{var}(v) \geq k-1$.

A history of sign variation and total positivity

- Descartes's rule of signs (1637): The number of positive real zeros of a real polynomial $\sum_{i=0}^{n} a_{i} t^{i}$ is at most $\operatorname{var}\left(a_{0}, a_{1}, \cdots, a_{n}\right)$.
- Pólya (1912) asked when a linear map $A: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ diminishes variation, i.e. satisfies $\operatorname{var}(A x) \leq \operatorname{var}(x)$ for all $x \in \mathbb{R}^{k}$. Schoenberg (1930) showed that an injective A diminishes variation iff for $j=1, \cdots, k$, all nonzero $j \times j$ minors of A have the same sign.
formations. The problem of characterizing such transformations was attacked by Schoenberg in 1930 with only partial success
- Gantmakher, Krein (1935): The eigenvalues of a totally positive square matrix (whose minors are all positive) are real, positive, and distinct.
- Gantmakher, Krein (1950): Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems (Russian), 2nd ed., 359pp.

22825 (AEC-tr-4481) OSCILLATION MATRICES AND KERNELS AND SMALL VIBRATIONS OF MECHANICAL SYSTEMS. Second Edition Corrected and Expanded. F. R. Gantmakher and M. G. Krein. Translated from a Publication of the State Publishing House for Technical-Theoretical Literature, Moscow-Leningrad, 1950. 414p.

A natural mathematical base is proposed for the investigation of the so-called oscillation properties of small harmonic oscillations of linear elastic continua, such as, transverse oscillations of strings, rods, and multiple-span beams, and torsional oscillations of shafts. The book is

A history of sign variation and total positivity

- Whitney (1952): The totally positive matrices are dense in the totally nonnegative matrices.
- Aissen, Schoenberg, Whitney (1952): Let $r_{1}, \cdots, r_{n} \in \mathbb{C}$. Then r_{1}, \cdots, r_{n} are all nonnegative reals iff $s_{\lambda}\left(r_{1}, \cdots, r_{n}\right) \geq 0$ for all partitions λ.
- Karlin (1968): Total Positivity, Volume I, 576pp.
- Lusztig (1994) constructed a theory of total positivity for G and G / P.

One of the main tools in our study of $G_{\geq 0}$ and $G_{>0}$ is the theory of canonical bases in [L1]. Thus, our proof of the fact that $G_{\geq 0}$ is closed in G (Theorem 4.3) is based on the positivity properties of the canonical bases (in the simply-laced case), proved in [L1],[L2], which is a nonelementary statement, depending ultimately on the Weil conjectures. The
Rietsch (1997) and Marsh, Rietsch (2004) developed the theory for G / P.

- Fomin and Zelevinsky (2000s) introduced cluster algebras.
- Postnikov (2006) and others studied the combinatorics of $\mathrm{Gr}_{k, n}^{\geq 0}$.
- Kodama, Williams (2014): A τ-function $\tau=\sum_{I \in\binom{[n]}{k}} \Delta_{I}(V) s_{\lambda(I)}$ associated to $V \in \mathrm{Gr}_{k, n}$ gives a regular soliton solution to the KP equation iff V is totally nonnegative.

How close is a subspace to being totally positive?

- Can we determine $\max _{v \in V} \operatorname{var}(v)$ and $\max _{v \in V \backslash\{0\}} \overline{\operatorname{Var}}(v)$ from the Plücker coordinates of V ?

Theorem (Karp (2015))

Let $V \in \mathrm{Gr}_{k, n}$ and $s \geq 0$. Then $\overline{\operatorname{var}}(v) \leq k-1+s$ for all nonzero $v \in V$ iff

$$
\overline{\operatorname{var}}\left(\left(\Delta_{J \cup\{i\}}(V)\right)_{i \neq J}\right) \leq s
$$

for all $J \in\binom{[n]}{k-1}$ such that the sequence above is not identically zero.

- e.g. Let $V:=\left[\begin{array}{cccc}1 & 0 & -2 & 4 \\ 0 & 2 & 1 & 1\end{array}\right] \in \operatorname{Gr}_{2,4}$ and $s:=1$. The fact that $\overline{\operatorname{var}}(v) \leq 2$ for all $v \in V \backslash\{0\}$ is equivalent to the fact that the sequences $\begin{array}{ll}\left(\Delta_{\{1,2\}}, \Delta_{\{1,3\}}, \Delta_{\{1,4\}}\right)=(2,1,1), & \left(\Delta_{\{1,3\}}, \Delta_{\{2,3\}}, \Delta_{\{3,4\}}\right)=(1,4,-6), \\ \left(\Delta_{\{1,2\}}, \Delta_{\{2,3\}}, \Delta_{\{2,4\}}\right)=(2,4,-8), & \left(\Delta_{\{1,4\}}, \Delta_{\{2,4\}}, \Delta_{\{3,4\}}\right)=(1,-8,-6)\end{array}$ each change sign at most once.

How close is a subspace to being totally nonnegative?

Theorem (Karp (2015))

Let $V \in \mathrm{Gr}_{k, n}$ and $s \geq 0$.
(i) If $\operatorname{var}(v) \leq k-1+s$ for all $v \in V$, then

$$
\operatorname{var}\left(\left(\Delta_{J \cup\{i\}}(V)\right)_{i \notin J}\right) \leq s \quad \text { for all } J \in\binom{[n]}{k-1} .
$$

The converse holds if V is generic (i.e. $\Delta_{I}(V) \neq 0$ for all I).
(ii) We can perturb V into a generic W with $\max _{v \in V} \operatorname{var}(v)=\max _{v \in W} \operatorname{var}(v)$.

- e.g. Consider $\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right] \rightsquigarrow\left[\begin{array}{cccc}1 & 0 & \overparen{1} & 0 \\ 0 & 1 & 0.1 & 1\end{array}\right] \rightsquigarrow\left[\begin{array}{cccc}1 & 0 & 1 & 0.01 \\ 0 & 1 & 0.1 & 1.001\end{array}\right]$.

The 4 sequences of Plücker coordinates are
$\left(\Delta_{\{1,2\}}, \Delta_{\{1,3\}}, \Delta_{\{1,4\}}\right)=(1, \stackrel{0.1}{\varnothing}, \underset{1}{1,001})$,
$\left(\Delta_{\{1,3\}}, \Delta_{\{2,3\}}, \Delta_{\{3,4\}}\right)=\left(\ddot{\varnothing}_{0}^{0.1},-1,1\right)$,
$\left(\Delta_{\{1,2\}}, \Delta_{\{2,3\}}, \Delta_{\{2,4\}}\right)=(1,-1, \stackrel{-0.01}{ })^{-}$,
$\left(\Delta_{\{1,4\}}, \Delta_{\{2,4\}}, \Delta_{\{3,4\}}\right) \stackrel{1.001-0.01}{=}(x, \varnothing, 1)$.

- Note: var is increasing while $\overline{\mathrm{var}}$ is decreasing with respect to genericity.

Oriented matroids

- An oriented matroid is a combinatorial abstraction of a real subspace, which records the Plücker coordinates up to sign, or equivalently the vectors up to sign.

LOOK INSIDE!

- These results generalize to oriented matroids.

Amplituhedra

- Let $Z: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k+m}$ be a linear map, and $Z_{\mathrm{Gr}}: \mathrm{Gr}_{k, n}^{\geq 0} \rightarrow \mathrm{Gr}_{k, k+m}$ the map it induces on $\mathrm{Gr}_{k, n}^{\geq 0}$. In the case that all $(k+m) \times(k+m)$ minors of Z are positive, the image $Z_{\mathrm{Gr}}\left(\mathrm{Gr}_{k, n}^{\geq 0}\right)$ is called a (tree) amplituhedron.
- e.g. Let $Z:=\left[\begin{array}{ccccc}1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 \\ 4 & 1 & 0 & 1 & 4\end{array}\right]$ and $k:=1$. Then $Z_{\operatorname{Gr}}\left(\operatorname{Gr}_{1,5}^{\geq 0}\right)$ equals

$$
\left\{\begin{array}{c}
(1:-2 a-b+d+2 e: \\
\left.4 a+b+d+4 e): \begin{array}{l}
a, b, c, d, e \geq 0, \\
a+b+c+d+e=1
\end{array}\right\} \subseteq \mathbb{P}^{2} . ~ \\
v_{1}=(-2,4) \\
v_{2}=(-1,1)
\end{array}\right.
$$

Amplituhedra

- When $k=1$, amplituhedra are precisely cyclic polytopes. Cyclic polytopes achieve the maximum number of faces (in every dimension) in Stanley's upper bound theorem (1975).
- Lam (2015) proposed relaxing the positivity condition on Z, and called the more general class of images $Z_{\mathrm{Gr}}\left(\mathrm{Gr}_{k, n}^{\geq 0}\right)$ Grassmann polytopes. When $k=1$, Grassmann polytopes are precisely polytopes.
- Arkani-Hamed and Trnka (2013) introduced amplituhedra in order to study scattering amplitudes, which they compute as an integral over the amplituhedron $Z_{\mathrm{Gr}}\left(\mathrm{Gr}_{k, n}^{\geq 0}\right)$ when $m=4$.
- A scattering amplitude is a complex number whose modulus squared is the probability of observing a certain scattering process, e.g. a process involving n gluons, $k+2$ of negative helicity and $n-k-2$ of positive helicity.

When is Z_{Gr} well defined?

- Recall that $Z: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k+m}$ is a linear map, which induces a map $Z_{\mathrm{Gr}}: \mathrm{Gr}_{k, n}^{\geq 0} \rightarrow \mathrm{Gr}_{k, k+m}$ on $\mathrm{Gr}_{k, n}^{\geq 0}$. How do we know that Z_{Gr} is well defined on $\operatorname{Gr}_{k, n}^{\geq 0}$, i.e. $\operatorname{dim}\left(Z_{\mathrm{Gr}}(V)\right)=k$ for all $V \in \operatorname{Gr}_{k, n}^{\geq 0}$?
- Note: $\operatorname{dim}\left(Z_{\mathrm{Gr}}(V)\right)=k \Longleftrightarrow Z(v) \neq 0$ for all nonzero $v \in V$.

Lemma

$\bigcup \mathrm{Gr}_{k, n}^{\geq 0}=\left\{v \in \mathbb{R}^{n}: \operatorname{var}(v) \leq k-1\right\}$.

- \subseteq follows from Gantmakher and Krein's theorem. \supseteq is an exercise.

$$
(2,0,5,-1,-4,-1,3) \in\left[\begin{array}{ccccccc}
2 & 0 & 5 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & -4 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 3
\end{array}\right] \in \mathrm{Gr}_{3,7}^{\geq 0}
$$

When is Z_{Gr} well defined?

Theorem (Karp (2015))

Let $Z: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k+m}$ have rank $k+m$, and $W \in \mathrm{Gr}_{k+m, n}$ be the row span of Z. The following are equivalent:
(i) the $\operatorname{map} Z_{\mathrm{Gr}}$ is well defined, i.e. $\operatorname{dim}\left(Z_{\mathrm{Gr}}(V)\right)=k$ for all $V \in \mathrm{Gr}_{k, n}^{\geq 0}$;
(ii) $\operatorname{var}(v) \geq k$ for all nonzero $v \in \operatorname{ker}(Z)=W^{\perp}$; and
(iii) $\overline{\operatorname{var}}\left(\left(\Delta_{\backslash\{i\}}(W)\right)_{i \in J}\right) \leq m$ for all $J \in\binom{[n]}{k+m+1}$ with $\operatorname{dim}\left(W_{J}\right)=k+m$.

- e.g. Let $Z:=\left[\begin{array}{cccc}2 & -1 & 1 & 1 \\ 1 & 2 & -1 & 3\end{array}\right]$, so $n=4, k+m=2$. The 4 relevant sequences of Plücker coordinates (as J ranges over $\binom{[4]}{3}$) are $\left(\Delta_{\{2,3\}}, \Delta_{\{1,3\}}, \Delta_{\{1,2\}}\right)=(-1,-3,5),\left(\Delta_{\{3,4\}}, \Delta_{\{1,4\}}, \Delta_{\{1,3\}}\right)=(4,5,-3)$, $\left(\Delta_{\{2,4\}}, \Delta_{\{1,4\}}, \Delta_{\{1,2\}}\right)=(-5,5,5), \quad\left(\Delta_{\{3,4\}}, \Delta_{\{2,4\}}, \Delta_{\{2,3\}}\right)=(4,-5,-1)$.

The maximum number of sign changes among these 4 sequences is 1 , which is at most $2-k$ iff $k \leq 1$. Hence Z_{Gr} is well defined iff $k \leq 1$.

When is Z_{Gr} well defined?

Theorem (Karp (2015))

Let $Z: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k+m}$ have rank $k+m$, and $W \in \mathrm{Gr}_{k+m, n}$ be the row span of Z. The following are equivalent:
(i) the map Z_{Gr} is well defined, i.e. $\operatorname{dim}\left(Z_{\mathrm{Gr}}(V)\right)=k$ for all $V \in \mathrm{Gr}_{k, n}^{\geq 0}$;
(ii) $\operatorname{var}(v) \geq k$ for all nonzero $v \in \operatorname{ker}(Z)=W^{\perp}$; and
(iii) $\overline{\operatorname{var}}\left(\left(\Delta_{\backslash\{i\}}(W)\right)_{i \in J}\right) \leq m$ for all $J \in\binom{[n]}{k+m+1}$ with $\operatorname{dim}\left(W_{J}\right)=k+m$.

- If $m=0$, then (ii) \Leftrightarrow (iii) is a 'dual version' of Gantmakher and Krein's theorem: $V \in \mathrm{Gr}_{k, n}$ is totally positive iff $\operatorname{var}(v) \geq k$ for all $v \in V^{\perp} \backslash\{0\}$.
- Arkani-Hamed and Trnka's condition on Z (for Z to define an amplituhedron) is that its $(k+m) \times(k+m)$ minors are all positive. In this case, $Z_{G r}$ is well defined by either (ii) or (iii).
- Lam's condition on Z (for Z to define a Grassmann polytope) is that W has a totally positive k-dimensional subspace. This is sufficient by (ii).
- Open problem: is Lam's condition also necessary?

Further directions

- Is there an efficient way to test whether a given $V \in \mathrm{Gr}_{k, n}$ is totally positive using the data of sign patterns? (For Plücker coordinates, in order to test whether V is totally positive, we only need to check that some particular $k(n-k)$ Plücker coordinates are positive, not all $\binom{n}{k}$.)
- Is there a simple way to index the cell decomposition of $\mathrm{Gr}_{k, n}^{\geq 0}$ using the data of sign patterns?
- Is there a nice stratification of the subset of the Grassmannian

$$
\left\{V \in \operatorname{Gr}_{k, n}: \operatorname{var}(v) \leq k-1+s \text { for all } v \in V\right\}
$$

for fixed s ? (If $s=0$, this is $\mathrm{Gr}_{k, n}^{\geq 0}$.)

- I determined when $Z_{G r}$ is well defined on the totally positive Grassmannian $\mathrm{Gr}_{k, n}^{>0}$. When is Z_{Gr} well defined on a given cell of $\mathrm{Gr}_{k, n}^{\geq 0}$?

Thank you!

