Sign variation, the Grassmannian, and total positivity

arXiv:1503.05622
Slides available at math.berkeley.edu/~skarp

Steven N. Karp, UC Berkeley

April 22nd, 2016 Texas State University, San Marcos

Alternating curves

Proposition

Let $f:[0,1]\to\mathbb{R}^k$ be a continuous curve. Then no hyperplane through 0 contains k points on the curve iff the determinants

$$\det[f(t_1) \mid \cdots \mid f(t_k)]$$
 $(0 \le t_1 < \cdots < t_k \le 1)$

are either all positive or all negative.

Proof

Since $\{(t_1, \dots, t_k) \in \mathbb{R}^k : 0 \le t_1 < \dots < t_k \le 1\} \subseteq \mathbb{R}^k$ is connected, its image $\{\det[f(t_1) \mid \cdots \mid f(t_k)] : 0 \le t_1 < \cdots < t_k \le 1\} \subseteq \mathbb{R}$ is connected.

• How can we discretize this result?

Alternating curves

Theorem (Gantmakher, Krein (1950); Schoenberg, Whitney (1951))

Let $x_1, \dots, x_n \in \mathbb{R}^k$ span \mathbb{R}^k . Then the following are equivalent:

- (i) the piecewise-linear path x_1, \dots, x_n crosses any hyperplane through 0 at most k-1 times;
- (ii) the sequence (a^Tx_1, \dots, a^Tx_n) changes sign at most k-1 times for all $a \in \mathbb{R}^n$; and
- (iii) the $k \times k$ minors of the $k \times n$ matrix $[x_1|\cdots|x_n]$ are either all nonnegative or all nonpositive.

- The set of such point configurations (x_1, \dots, x_n) , modulo linear automorphisms of \mathbb{R}^k , is the *totally nonnegative Grassmannian*.
- Can we characterize the maximum number of hyperplane crossings of the path x_1, \dots, x_n in terms of the $k \times k$ minors of $[x_1 | \dots | x_n]$?

The Grassmannian $Gr_{k,n}$

• The Grassmannian $Gr_{k,n}$ is the set of k-dimensional subspaces V of \mathbb{R}^n .

$$V := \begin{bmatrix} (1,0,-4,-3) \\ 0 & 1 & 3 & 2 \\ 0 & 1 & 3 & 2 \end{bmatrix} \in \mathsf{Gr}_{2,4}$$

$$= \begin{bmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & 3 & 2 \end{bmatrix}$$

$$\Delta_{\{1,2\}}=1, \Delta_{\{1,3\}}=3, \Delta_{\{1,4\}}=2, \Delta_{\{2,3\}}=4, \Delta_{\{2,4\}}=3, \Delta_{\{3,4\}}=1$$

- Given $V \in Gr_{k,n}$ in the form of a $k \times n$ matrix, for $I \in \binom{[n]}{k}$ let $\Delta_I(V)$ be the $k \times k$ minor of V with columns I. The *Plücker coordinates* $\Delta_I(V)$ are well defined up to multiplication by a global nonzero constant.
- We say that $V \in \operatorname{Gr}_{k,n}$ is totally nonnegative if $\Delta_I(V) \geq 0$ for all $I \in \binom{[n]}{k}$, and totally positive if $\Delta_I(V) > 0$ for all $I \in \binom{[n]}{k}$. Denote the set totally nonnegative V by $\operatorname{Gr}_{k,n}^{\geq 0}$, and the set of totally positive V by $\operatorname{Gr}_{k,n}^{>0}$.

Sign variation

• For $v \in \mathbb{R}^n$, let var(v) be the number of sign changes in the sequence (v_1, v_2, \dots, v_n) , ignoring any zeros.

$$\mathsf{var}(1,-4,0,-3,6,0,-1) = \mathsf{var}(\widehat{1,-4},\widehat{-3,6,-1}) = 3$$

Similarly, let $\overline{\text{var}}(v)$ be the maximum of var(w) over all $w \in \mathbb{R}^n$ obtained from v by changing zero components of w.

$$\overline{\text{var}}(1, -4, 0, -3, 6, 0, -1) = 5$$

Theorem (Gantmakher, Krein (1950))

Let $V \in Gr_{k,n}$.

- (i) V is totally nonnegative iff $var(v) \le k-1$ for all $v \in V$.
- (ii) V is totally positive iff $\overline{\mathrm{var}}(v) \leq k-1$ for all nonzero $v \in V$.
- $\bullet \text{ e.g. } \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \end{bmatrix} \in \mathsf{Gr}_{2,4}^{>0}.$
- Note that every $V \in Gr_{k,n}$ contains a vector v with $var(v) \ge k 1$.

A history of sign variation and total positivity

- Descartes's rule of signs (1637): The number of positive real zeros of a real polynomial $\sum_{i=0}^{n} a_i t^i$ is at most $var(a_0, a_1, \dots, a_n)$.
- Pólya (1912) asked when a linear map $A: \mathbb{R}^k \to \mathbb{R}^n$ diminishes variation, i.e. satisfies $\text{var}(Ax) \leq \text{var}(x)$ for all $x \in \mathbb{R}^k$. Schoenberg (1930) showed that an injective A diminishes variation iff for $j = 1, \dots, k$, all nonzero $j \times j$ minors of A have the same sign.

formations. The problem of characterizing such transformations was attacked by Schoenberg in 1930 with only partial success

- Gantmakher, Krein (1935): The eigenvalues of a *totally positive* square matrix (whose minors are all positive) are real, positive, and distinct.
- Gantmakher, Krein (1950): Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems (Russian), 2nd ed., 359pp.

22825 (AEC-tr-4481) OSCILLATION MATRICES AND KERNELS AND SMALL VIBRATIONS OF MECHANICAL SYSTEMS. Second Edition Corrected and Expanded. F. R. Gantmakher and M. G. Krein. Translated from a Publication of the State Publishing House for Technical-Theoretical Literature, Moscow-Leningrad, 1950. 414p.

A natural mathematical base is proposed for the investigation of the so-called oscillation properties of small harmonic oscillations of linear elastic continua, such as, transverse oscillations of strings, rods, and multiple-span beams, and torsional oscillations of shafts. The book is

A history of sign variation and total positivity

- Whitney (1952): The totally positive matrices are dense in the totally nonnegative matrices.
- Aissen, Schoenberg, Whitney (1952): Let $r_1, \dots, r_n \in \mathbb{C}$. Then r_1, \dots, r_n are all nonnegative reals iff $s_{\lambda}(r_1, \dots, r_n) \geq 0$ for all partitions λ .
- Karlin (1968): Total Positivity, Volume I, 576pp.
- ullet Lusztig (1994) constructed a theory of total positivity for G and G/P.

One of the main tools in our study of $G_{\geq 0}$ and $G_{>0}$ is the theory of canonical bases in [L1]. Thus, our proof of the fact that $G_{\geq 0}$ is closed in G (Theorem 4.3) is based on the positivity properties of the canonical bases (in the simply-laced case), proved in [L1],[L2], which is a non-elementary statement, depending ultimately on the Weil conjectures. The

Rietsch (1997) and Marsh, Rietsch (2004) developed the theory for G/P.

- Fomin and Zelevinsky (2000s) introduced cluster algebras.
- Postnikov (2006) and others studied the combinatorics of $Gr_{k,n}^{\geq 0}$.
- Kodama, Williams (2014): A τ -function $\tau = \sum_{I \in \binom{[n]}{k}} \Delta_I(V) \hat{s}_{\lambda(I)}^{\kappa,n}$

associated to $V \in Gr_{k,n}$ gives a *regular* soliton solution to the KP equation iff V is totally nonnegative.

How close is a subspace to being totally positive?

• Can we determine $\max_{v \in V} \text{var}(v)$ and $\max_{v \in V \setminus \{0\}} \overline{\text{var}}(v)$ from the Plücker coordinates of V?

Theorem (Karp (2015))

Let $V \in Gr_{k,n}$ and $s \ge 0$. Then $\overline{\mathrm{var}}(v) \le k-1+s$ for all nonzero $v \in V$ iff

$$\overline{\operatorname{var}}((\Delta_{J \cup \{i\}}(V))_{i \notin J}) \leq s$$

for all $J \in \binom{[n]}{k-1}$ such that the sequence above is not identically zero.

ullet e.g. Let $V:=egin{bmatrix} 1 & 0 & -2 & 4 \ 0 & 2 & 1 & 1 \end{bmatrix}\in \mathsf{Gr}_{2,4}$ and s:=1. The fact that

 $\overline{\operatorname{var}}(v) \leq 2$ for all $v \in V \setminus \{0\}$ is equivalent to the fact that the sequences

$$(\Delta_{\{1,2\}}, \Delta_{\{1,3\}}, \Delta_{\{1,4\}}) = (2,1,1), \qquad (\Delta_{\{1,3\}}, \Delta_{\{2,3\}}, \Delta_{\{3,4\}}) = (1,4,-6),$$

$$(\Delta_{\{1,2\}}, \Delta_{\{2,3\}}, \Delta_{\{2,4\}}) = (2,4,-8), \quad (\Delta_{\{1,4\}}, \Delta_{\{2,4\}}, \Delta_{\{3,4\}}) = (1,-8,-6)$$

each change sign at most once.

How close is a subspace to being totally nonnegative?

Theorem (Karp (2015))

Let $V \in Gr_{k,n}$ and $s \ge 0$.

(i) If $var(v) \le k - 1 + s$ for all $v \in V$, then

$$\operatorname{var}((\Delta_{J \cup \{i\}}(V))_{i \notin J}) \leq s$$
 for all $J \in \binom{[n]}{k-1}$.

The converse holds if V is generic (i.e. $\Delta_I(V) \neq 0$ for all I).

(ii) We can perturb V into a generic W with $\max_{v \in V} \text{var}(v) = \max_{v \in W} \text{var}(v)$.

• e.g. Consider
$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0.1 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 1 & 0.01 \\ 0 & 1 & 0.1 & 1.001 \end{bmatrix}$$
.

The 4 sequences of Plücker coordinates are

$$(\Delta_{\{1,2\}}, \Delta_{\{1,3\}}, \Delta_{\{1,4\}}) = (1, \overset{0.1}{\cancel{0}}, \overset{1.001}{\cancel{1}}), \quad (\Delta_{\{1,3\}}, \Delta_{\{2,3\}}, \Delta_{\{3,4\}}) = \overset{0.1}{\cancel{0}}, -1, 1),$$

$$(\Delta_{\{1,2\}}, \Delta_{\{2,3\}}, \Delta_{\{2,4\}}) = (1, -1, \overset{-0.01}{\cancel{0}}), \quad (\Delta_{\{1,4\}}, \Delta_{\{2,4\}}, \Delta_{\{3,4\}}) = (\overset{1.001}{\cancel{1}}, \overset{-0.01}{\cancel{0}}, 1).$$

ullet Note: var is *increasing* while $\overline{\text{var}}$ is *decreasing* with respect to genericity.

Oriented matroids

• An *oriented matroid* is a combinatorial abstraction of a real subspace, which records the Plücker coordinates up to sign, or equivalently the vectors up to sign.

• These results generalize to oriented matroids.

Amplituhedra

• Let $Z: \mathbb{R}^n \to \mathbb{R}^{k+m}$ be a linear map, and $Z_{\mathsf{Gr}}: \mathsf{Gr}_{k,n}^{\geq 0} \to \mathsf{Gr}_{k,k+m}$ the map it induces on $\mathsf{Gr}_{k,n}^{\geq 0}$. In the case that all $(k+m) \times (k+m)$ minors of Z are positive, the image $Z_{\mathsf{Gr}}(\mathsf{Gr}_{k,n}^{\geq 0})$ is called a *(tree) amplituhedron*.

• e.g. Let
$$Z:=\begin{bmatrix}1&1&1&1&1\\-2&-1&0&1&2\\4&1&0&1&4\end{bmatrix}$$
 and $k:=1$. Then $Z_{\mathsf{Gr}}(\mathsf{Gr}_{1,5}^{\geq 0})$ equals
$$\left\{ \begin{aligned} (1:-2a-b+d+2e:\\4a+b+d+4e) &: a,b,c,d,e\geq 0,\\4a+b+c+d+e=1 \end{aligned} \right\} \subseteq \mathbb{P}^2.$$

$$v_1=(-2,4)$$

$$v_2=(-1,1)$$

$$v_4=(1,1)$$

Amplituhedra

- When k=1, amplituhedra are precisely cyclic polytopes. Cyclic polytopes achieve the maximum number of faces (in every dimension) in Stanley's upper bound theorem (1975).
- Lam (2015) proposed relaxing the positivity condition on Z, and called the more general class of images $Z_{Gr}(Gr_{k,n}^{\geq 0})$ Grassmann polytopes. When k=1, Grassmann polytopes are precisely polytopes.
- Arkani-Hamed and Trnka (2013) introduced amplituhedra in order to study scattering amplitudes, which they compute as an integral over the amplituhedron $Z_{Gr}(Gr_{k,n}^{\geq 0})$ when m=4.
- A scattering amplitude is a complex number whose modulus squared is the probability of observing a certain scattering process, e.g. a process involving n gluons, k+2 of negative helicity and n-k-2 of positive helicity.

When is Z_{Gr} well defined?

- Recall that $Z: \mathbb{R}^n \to \mathbb{R}^{k+m}$ is a linear map, which induces a map $Z_{\mathsf{Gr}}: \mathsf{Gr}_{k,n}^{\geq 0} \to \mathsf{Gr}_{k,k+m}$ on $\mathsf{Gr}_{k,n}^{\geq 0}$. How do we know that Z_{Gr} is well defined on $\mathsf{Gr}_{k,n}^{\geq 0}$, i.e. $\dim(Z_{\mathsf{Gr}}(V)) = k$ for all $V \in \mathsf{Gr}_{k,n}^{\geq 0}$?
- Note: $\dim(Z_{Gr}(V)) = k \iff Z(v) \neq 0$ for all nonzero $v \in V$.

Lemma

$$\bigcup \operatorname{\mathsf{Gr}}_{k,n}^{\geq 0} = \{ v \in \mathbb{R}^n : \operatorname{\mathsf{var}}(v) \leq k-1 \}.$$

 $\bullet \subseteq$ follows from Gantmakher and Krein's theorem. \supseteq is an exercise.

$$(2,0,5,-1,-4,-1,3) \in \begin{bmatrix} 2 & 0 & 5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & -4 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix} \in \mathsf{Gr}_{3,7}^{\geq 0}$$

When is Z_{Gr} well defined?

Theorem (Karp (2015))

Let $Z: \mathbb{R}^n \to \mathbb{R}^{k+m}$ have rank k+m, and $W \in Gr_{k+m,n}$ be the row span of Z. The following are equivalent:

- (i) the map Z_{Gr} is well defined, i.e. $\dim(Z_{\mathsf{Gr}}(V)) = k$ for all $V \in \mathsf{Gr}^{\geq 0}_{k,n}$;
- (ii) $\operatorname{var}(v) \ge k$ for all nonzero $v \in \ker(Z) = W^{\perp}$; and
- (iii) $\overline{\operatorname{var}}((\Delta_{J\setminus\{i\}}(W))_{i\in J}) \leq m$ for all $J\in \binom{[n]}{k+m+1}$ with $\dim(W_J)=k+m$.
- e.g. Let $Z := \begin{bmatrix} 2 & -1 & 1 & 1 \\ 1 & 2 & -1 & 3 \end{bmatrix}$, so n = 4, k + m = 2. The 4 relevant sequences of Plücker coordinates (as J ranges over $\binom{[4]}{3}$) are

$$(\Delta_{\{2,3\}}, \Delta_{\{1,3\}}, \Delta_{\{1,2\}}) = (-1, -3, 5), (\Delta_{\{3,4\}}, \Delta_{\{1,4\}}, \Delta_{\{1,3\}}) = (4, 5, -3),$$

 $(\Delta_{\{2,4\}}, \Delta_{\{1,4\}}, \Delta_{\{1,2\}}) = (-5, 5, 5), (\Delta_{\{3,4\}}, \Delta_{\{2,4\}}, \Delta_{\{2,3\}}) = (4, -5, -1).$

The maximum number of sign changes among these 4 sequences is 1, which is at most 2 - k iff $k \le 1$. Hence Z_{Gr} is well defined iff $k \le 1$.

When is Z_{Gr} well defined?

Theorem (Karp (2015))

Let $Z: \mathbb{R}^n \to \mathbb{R}^{k+m}$ have rank k+m, and $W \in Gr_{k+m,n}$ be the row span of Z. The following are equivalent:

- (i) the map Z_{Gr} is well defined, i.e. $\dim(Z_{\mathsf{Gr}}(V)) = k$ for all $V \in \mathsf{Gr}^{\geq 0}_{k,n}$;
- (ii) $\operatorname{var}(v) \ge k$ for all nonzero $v \in \ker(Z) = W^{\perp}$; and
- (iii) $\overline{\operatorname{var}}((\Delta_{J\setminus\{i\}}(W))_{i\in J}) \leq m$ for all $J\in \binom{[n]}{k+m+1}$ with $\dim(W_J)=k+m$.
- If m=0, then (ii) \Leftrightarrow (iii) is a 'dual version' of Gantmakher and Krein's theorem: $V \in Gr_{k,n}$ is totally positive iff $var(v) \ge k$ for all $v \in V^{\perp} \setminus \{0\}$.
- Arkani-Hamed and Trnka's condition on Z (for Z to define an amplituhedron) is that its $(k+m)\times(k+m)$ minors are all positive. In this case, $Z_{\rm Gr}$ is well defined by either (ii) or (iii).
- Lam's condition on Z (for Z to define a Grassmann polytope) is that W has a totally positive k-dimensional subspace. This is sufficient by (ii).
- Open problem: is Lam's condition also necessary?

Further directions

- Is there an efficient way to test whether a given $V \in \operatorname{Gr}_{k,n}$ is totally positive using the data of sign patterns? (For Plücker coordinates, in order to test whether V is totally positive, we only need to check that some particular k(n-k) Plücker coordinates are positive, not all $\binom{n}{k}$.)
- Is there a simple way to index the cell decomposition of $Gr_{k,n}^{\geq 0}$ using the data of sign patterns?
- Is there a nice stratification of the subset of the Grassmannian

$$\{V\in \operatorname{Gr}_{k,n}: \operatorname{var}(v)\leq k-1+s \text{ for all } v\in V\},$$

for fixed s? (If s = 0, this is $Gr_{k,n}^{\geq 0}$.)

• I determined when $Z_{\rm Gr}$ is well defined on the totally positive Grassmannian ${\rm Gr}_{k,n}^{>0}$. When is $Z_{\rm Gr}$ well defined on a given cell of ${\rm Gr}_{k,n}^{\geq0}$?

Thank you!