Wronskians, total positivity, and real Schubert calculus

Slides available at lacim-membre.uqam.ca/~ ${ }^{\text {karp }}$

Steven N. Karp (LaCIM, Université du Québec à Montréal)

September 22nd, 2021
Washington University

Steiner's conic problem (1848)

- How many conics are tangent to 5 given conics? 7776 .
- de Jonquières (1859): 3264.
- Fulton (1996): "The question of how many solutions of real equations can be real is still very much open, particularly for enumerative problems."
- Fulton (1986); Ronga, Tognoli, Vust (1997): All 3264 conics can be real. 3264 Conics in a Second

- Breiding, Sturmfels, and Timme (2020) found 5 explicit such conics.

Shapiro-Shapiro conjecture (1995)

- Let $\mathrm{Gr}_{k, n}(\mathbb{C})$ be the Grassmannian of all k-dimensional subspaces of \mathbb{C}^{n}.
- Schubert (1886): Fix generic elements $W_{1}, \ldots, W_{k(n-k)} \in \operatorname{Gr}_{k, n}(\mathbb{C})$. Then there are $d_{k, n}$ elements $U \in \operatorname{Gr}_{n-k, n}(\mathbb{C})$ such that $U \cap W_{i} \neq\{0\}$ for all i, \quad where $d_{k, n}:=\frac{1!2!\cdots(k-1)!}{(n-k)!(n-k+1)!\cdots(n-1)!}(k(n-k))!$. - B. and M. Shapiro conjectured that if each W_{i} is an osculating plane to the rational normal curve $\gamma(x):=\left(1, x, \ldots, x^{n-1}\right)$, then every U is real.
- e.g. $k=2, n=4$

> F. Sottile, "Frontiers of reality in Schubert calculus"

- Bürgisser, Lerario (2020): a 'random' problem has $\approx \sqrt{d_{k, n}}$ real solutions.

Wronski map

- The Wronskian of k linearly independent functions $f_{1}, \ldots, f_{k}: \mathbb{C} \rightarrow \mathbb{C}$ is

$$
\operatorname{Wr}\left(f_{1}, \ldots, f_{k}\right):=\operatorname{det}\left[\begin{array}{ccc}
f_{1} & \cdots & f_{k} \\
f_{1}^{\prime} & \cdots & f_{k}^{\prime} \\
\vdots & \ddots & \vdots \\
f_{1}^{(k-1)} & \cdots & f_{k}^{(k-1)}
\end{array}\right] .
$$

- e.g. $\operatorname{Wr}(f, g)=\operatorname{det}\left[\begin{array}{cc}f & g \\ f^{\prime} & g^{\prime}\end{array}\right]=f g^{\prime}-f^{\prime} g=f^{2}\left(\frac{g}{f}\right)^{\prime}$.
- Let $V:=\operatorname{span}\left(f_{1}, \ldots, f_{k}\right)$. Then $\operatorname{Wr}(V)$ is well-defined up to a scalar. Its zeros are points in \mathbb{C} where some nonzero $f \in V$ has a zero of order k.
- The monic linear differential operator \mathcal{L} of order k with kernel V is

$$
\mathcal{L}(g)=\frac{\operatorname{Wr}\left(f_{1}, \ldots, f_{k}, g\right)}{\operatorname{Wr}\left(f_{1}, \ldots, f_{k}\right)}=\frac{d^{k} g}{d x^{k}}+\cdots
$$

- We identify \mathbb{C}^{n} with the space of polynomials of degree at most $n-1$:

$$
\mathbb{C}^{n} \leftrightarrow \mathbb{C}[x]_{\leq n-1}, \quad\left(a_{1}, \ldots, a_{n}\right) \leftrightarrow a_{1}+a_{2} x+\cdots+a_{n} x^{n-1}
$$

We obtain the Wronski map $\mathrm{Wr}: \mathrm{Gr}_{k, n}(\mathbb{C}) \rightarrow \mathbb{P}\left(\mathbb{C}[x]_{\leq k(n-k)}\right)$.

Wronskian formulation

Conjecture (Shapiro-Shapiro (1995))

Let $V \in \mathrm{Gr}_{k, n}(\mathbb{C})$. If all complex zeros of $\mathrm{Wr}(V)$ are real, then V is real.

- e.g. Let $k:=2, n:=3$. Suppose that the complex zeros of $\mathrm{Wr}(V)$ are 2 and 7 . Then $V=\operatorname{span}\left((x-2)^{2},(x-7)^{2}\right)$, which is real.
- Sottile (1999) proved the conjecture asymptotically.
- Eremenko and Gabrielov (2002) proved the conjecture for $k=2, n-2$.
- Mukhin, Tarasov, and Varchenko (2009) proved the conjecture via the Bethe ansatz. All $d_{k, n}$ solutions are distinct when the zeros are distinct.
- Purbhoo (2010) explicitly labeled all $d_{k, n}$ solutions by standard tableaux.
- Purbhoo (2010) proved the Shapiro-Shapiro conjecture for the orthogonal Grassmannian. Analogues due to Sottile for the Lagrangian Grassmannian and the complete flag variety remain open.
- Levinson and Purbhoo (2021) proved the Shapiro-Shapiro conjecture topologically, and extended it to Wronskians with nonreal zeros.

Secant conjecture and disconjugacy conjecture

Conjecture (García-Puente, Hein, Hillar, Martín del Campo, Ruffo, Sottile, Teitler (2012))
Let $W_{1}, \ldots, W_{k(n-k)} \in \mathrm{Gr}_{k, n}(\mathbb{C})$, where each W_{i} is spanned by k points on the rational normal curve γ, such that the points chosen for each W_{i} lie in $k(n-k)$ disjoint intervals of \mathbb{R}. Then all $U \in \mathrm{Gr}_{n-k, n}(\mathbb{C})$ satisfying

$$
U \cap W_{i} \neq\{0\} \text { for all } i
$$

are real.

- Eremenko (2015) showed that the secant conjecture is implied by:

Conjecture (Eremenko (2015))

Let $V \in \mathrm{Gr}_{k, n}(\mathbb{R})$. If all zeros of $\mathrm{Wr}(V)$ are real, then every nonzero $f \in V$ has at most $k-1$ zeros in any interval of \mathbb{R} on which $\operatorname{Wr}(V)$ is nonzero.

- The case $k=2$ of both conjectures was proved by Eremenko, Gabrielov, Shapiro, and Vainshtein (2006).

Total positivity

- Given $V \in \mathrm{Gr}_{k, n}(\mathbb{C})$, take a $k \times n$ matrix whose rows span V. For k-subsets I of $\{1, \ldots, n\}$, let $\Delta_{I}(V)$ be the $k \times k$ minor located in columns I. The Plücker coordinates $\Delta_{l}(V)$ are well-defined up to a scalar. - e.g.

$$
\in \operatorname{Gr}_{2,4}(\mathbb{C}) \leftrightarrow\left[\begin{array}{cccc}
1 & 0 & -4 & -3 \\
0 & 1 & 3 & 2
\end{array}\right]
$$

$$
\Delta_{12}=1, \quad \Delta_{13}=3, \quad \Delta_{14}=2, \quad \Delta_{23}=4, \quad \Delta_{24}=3, \quad \Delta_{34}=1
$$

- We call $V \in \operatorname{Gr}_{k, n}(\mathbb{C})$ totally nonnegative if $\Delta_{l}(V) \geq 0$ for all I, and totally positive if $\Delta_{l}(V)>0$ for all l.
- Gantmakher, Krein (1950): If V is real, then V is totally nonnegative if and only if each real vector in V changes sign at most $k-1$ times.

Total positivity conjecture

Conjecture (Eremenko (2015))

Let $V \in \mathrm{Gr}_{k, n}(\mathbb{R})$. If all zeros of $\mathrm{Wr}(V)$ are real, then every nonzero $f \in V$ has at most $k-1$ zeros in any interval of \mathbb{R} on which $\mathrm{Wr}(V)$ is nonzero.

Conjecture (Karp (2021))
Let $V \in \mathrm{Gr}_{k, n}(\mathbb{R})$.
(i) If all zeros of $\mathrm{Wr}(V)$ lie in $[-\infty, 0]$, then V is totally nonnegative.
(ii) If all zeros of $\mathrm{Wr}(V)$ lie in $(-\infty, 0)$, then V is totally positive. (Above, $\mathrm{Wr}(V)$ has a zero at $-\infty$ if its degree is less than $k(n-k)$.)

Theorem (Karp (2021))

The two conjectures above are equivalent.

- One direction follows from Descartes's rule of signs. The other direction follows from a new description of the totally positive complete flag variety.
- The latter conjecture also implies a totally positive secant conjecture.

Complete flag variety

- Let $\mathrm{FI}_{n}(\mathbb{R})$ be the complete flag variety of tuples $\left(V_{1}, \ldots, V_{n-1}\right)$, where

$$
V_{1} \subset \cdots \subset V_{n-1} \subset \mathbb{R}^{n} \quad \text { and } \operatorname{dim}\left(V_{k}\right)=k \text { for all } 1 \leq k \leq n-1
$$

- We say that $\left(V_{1}, \ldots, V_{n-1}\right)$ is totally nonnegative if all its Plücker coordinates are nonnegative, i.e., $V_{k} \in \mathrm{Gr}_{k, n}(\mathbb{R})$ is totally nonnegative for all $1 \leq k \leq n-1$. We similarly define totally positive complete flags.

Theorem (Karp (2021))

(i) The complete flag $\left(V_{1}, \ldots, V_{n-1}\right)$ is totally nonnegative if and only if $\mathrm{Wr}\left(V_{k}\right)$ is nonzero on the interval $(0, \infty)$, for all $1 \leq k \leq n-1$.
(ii) The complete flag $\left(V_{1}, \ldots, V_{n-1}\right)$ totally positive if and only if $\mathrm{Wr}\left(V_{k}\right)$ is nonzero on the interval $[0, \infty]$, for all $1 \leq k \leq n-1$.

- In the language of Chebyshev systems, the conclusions above say that $\left(V_{1}, \ldots, V_{n-1}\right)$ forms a Markov system (or ECT-system) on ($0, \infty$) and $[0, \infty]$, respectively. Such systems also appear in the study of disconjugate linear differential equations.

Complete flag variety

- e.g. Let $n:=3$, and let $\left(V_{1}, V_{2}\right) \in \mathrm{Fl}_{3}(\mathbb{R})$ be represented by the matrix

$$
\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right], \quad \text { with } \quad \begin{aligned}
& \Delta_{1}=1, \Delta_{2}=a, \Delta_{3}=b, \\
& \Delta_{12}=1, \Delta_{13}=c, \Delta_{23}=a c-b
\end{aligned}
$$

Hence $\left(V_{1}, V_{2}\right)$ is totally positive if and only if $a, b, c, a c-b>0$. Now,

$$
\begin{aligned}
& \operatorname{Wr}\left(V_{1}\right)=\operatorname{Wr}\left(1+a x+b x^{2}\right)=1+a x+b x^{2} \\
& \operatorname{Wr}\left(V_{2}\right)=\operatorname{Wr}\left(1+a x+b x^{2}, x+c x^{2}\right)=1+2 c x+(a c-b) x^{2}
\end{aligned}
$$

The Theorem says that $a, b, c, a c-b>0$ if and only if $\operatorname{Wr}\left(V_{1}\right)$ and $\mathrm{Wr}\left(V_{2}\right)$ are positive on $[0, \infty]$. The forward direction is immediate, and we can verify the reverse direction by a calculation.

- In general, the reverse direction follows from a topological argument, using the following lemma: if $\left(V_{1}, \ldots, V_{n-1}\right) \in \mathrm{FI}_{n}(\mathbb{R})$ such that $\mathrm{Wr}\left(V_{k}\right)$ is nonzero at ∞ for all $1 \leq k \leq n-1$, then $\left(V_{1}, \ldots, V_{n-1}\right)$ becomes totally positive upon replacing the variable x by $x+t$ for all $t \gg 0$.

