Wronskians, total positivity, and real Schubert calculus

Slides available at lacim-membre.uqam.ca/~karp

Steven N. Karp (LaCIM, Université du Québec à Montréal)

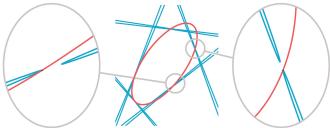
September 22nd, 2021 Washington University

Steiner's conic problem (1848)

- How many conics are tangent to 5 given conics? 7776.
 de Jonquières (1859): 3264.
- Fulton (1996): "The question of how many solutions of real equations can be real is still very much open, particularly for enumerative problems."

• Fulton (1986); Ronga, Tognoli, Vust (1997): All 3264 conics can be real.

3264 Conics in a Second



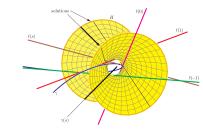
• Breiding, Sturmfels, and Timme (2020) found 5 explicit such conics.

Shapiro–Shapiro conjecture (1995)

Let Gr_{k,n}(ℂ) be the *Grassmannian* of all *k*-dimensional subspaces of ℂⁿ.
Schubert (1886): Fix generic elements W₁,..., W_{k(n-k)} ∈ Gr_{k,n}(ℂ). Then there are d_{k,n} elements U ∈ Gr_{n-k,n}(ℂ) such that

 $U \cap W_i \neq \{0\}$ for all i, where $d_{k,n} := \frac{1! 2! \cdots (k-1)!}{(n-k)! (n-k+1)! \cdots (n-1)!} (k(n-k))!$.

• B. and M. Shapiro conjectured that if each W_i is an osculating plane to the rational normal curve $\gamma(x) := (1, x, \dots, x^{n-1})$, then every U is real.



F. Sottile, "Frontiers of reality in Schubert calculus"

• Bürgisser, Lerario (2020): a 'random' problem has $\approx \sqrt{d_{k,n}}$ real solutions.

Steven N. Karp (LaCIM)

• e.g. k = 2, n = 4

Wronskians, total positivity, and real Schubert calculus

Wronski map

• The Wronskian of k linearly independent functions $f_1, \ldots, f_k : \mathbb{C} \to \mathbb{C}$ is

$$\mathsf{Wr}(f_1,\ldots,f_k) := \mathsf{det} \begin{bmatrix} f_1 & \cdots & f_k \\ f'_1 & \cdots & f'_k \\ \vdots & \ddots & \vdots \\ f_1^{(k-1)} & \cdots & f_k^{(k-1)} \end{bmatrix}$$

• e.g.
$$Wr(f,g) = det \begin{bmatrix} f & g \\ f' & g' \end{bmatrix} = fg' - f'g = f^2(\frac{g}{f})'.$$

• Let $V := \operatorname{span}(f_1, \ldots, f_k)$. Then $\operatorname{Wr}(V)$ is well-defined up to a scalar. Its zeros are points in \mathbb{C} where some nonzero $f \in V$ has a zero of order k.

• The monic linear differential operator $\mathcal L$ of order k with kernel V is

$$\mathcal{L}(g) = \frac{\mathsf{Wr}(f_1,\ldots,f_k,g)}{\mathsf{Wr}(f_1,\ldots,f_k)} = \frac{d^kg}{dx^k} + \cdots$$

• We identify \mathbb{C}^n with the space of polynomials of degree at most n-1:

$$\mathbb{C}^n \leftrightarrow \mathbb{C}[x]_{\leq n-1}, \quad (a_1, \ldots, a_n) \leftrightarrow a_1 + a_2 x + \cdots + a_n x^{n-1}$$

We obtain the Wronski map $Wr : Gr_{k,n}(\mathbb{C}) \to \mathbb{P}(\mathbb{C}[x]_{\leq k(n-k)}).$

Conjecture (Shapiro–Shapiro (1995))

Let $V \in Gr_{k,n}(\mathbb{C})$. If all complex zeros of Wr(V) are real, then V is real.

• e.g. Let k := 2, n := 3. Suppose that the complex zeros of Wr(V) are 2 and 7. Then $V = span((x-2)^2, (x-7)^2)$, which is real.

• Sottile (1999) proved the conjecture asymptotically.

• Eremenko and Gabrielov (2002) proved the conjecture for k = 2, n - 2.

• Mukhin, Tarasov, and Varchenko (2009) proved the conjecture via the *Bethe ansatz*. All $d_{k,n}$ solutions are distinct when the zeros are distinct.

• Purbhoo (2010) explicitly labeled all $d_{k,n}$ solutions by standard tableaux.

• Purbhoo (2010) proved the Shapiro-Shapiro conjecture for the orthogonal Grassmannian. Analogues due to Sottile for the Lagrangian Grassmannian and the complete flag variety remain open.

• Levinson and Purbhoo (2021) proved the Shapiro–Shapiro conjecture topologically, and extended it to Wronskians with nonreal zeros.

Secant conjecture and disconjugacy conjecture

Conjecture (García-Puente, Hein, Hillar, Martín del Campo, Ruffo, Sottile, Teitler (2012))

Let $W_1, \ldots, W_{k(n-k)} \in \operatorname{Gr}_{k,n}(\mathbb{C})$, where each W_i is spanned by k points on the rational normal curve γ , such that the points chosen for each W_i lie in k(n-k) disjoint intervals of \mathbb{R} . Then all $U \in \operatorname{Gr}_{n-k,n}(\mathbb{C})$ satisfying

$$U \cap W_i \neq \{0\}$$
 for all i

are real.

• Eremenko (2015) showed that the secant conjecture is implied by:

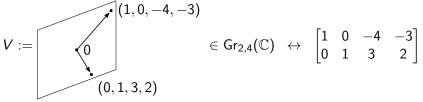
Conjecture (Eremenko (2015))

Let $V \in Gr_{k,n}(\mathbb{R})$. If all zeros of Wr(V) are real, then every nonzero $f \in V$ has at most k - 1 zeros in any interval of \mathbb{R} on which Wr(V) is nonzero.

• The case k = 2 of both conjectures was proved by Eremenko, Gabrielov, Shapiro, and Vainshtein (2006).

Total positivity

• Given $V \in \operatorname{Gr}_{k,n}(\mathbb{C})$, take a $k \times n$ matrix whose rows span V. For k-subsets I of $\{1, \ldots, n\}$, let $\Delta_I(V)$ be the $k \times k$ minor located in columns I. The *Plücker coordinates* $\Delta_I(V)$ are well-defined up to a scalar. e.g.



 $\Delta_{12} = 1$, $\Delta_{13} = 3$, $\Delta_{14} = 2$, $\Delta_{23} = 4$, $\Delta_{24} = 3$, $\Delta_{34} = 1$

• We call $V \in Gr_{k,n}(\mathbb{C})$ totally nonnegative if $\Delta_I(V) \geq 0$ for all I, and totally positive if $\Delta_I(V) > 0$ for all I.

• Gantmakher, Krein (1950): If V is real, then V is totally nonnegative if and only if each real vector in V changes sign at most k-1 times.

Steven N. Karp (LaCIM) Wronskians, total positivity, and real Schubert calculus September 22nd, 2021

Conjecture (Eremenko (2015))

Let $V \in Gr_{k,n}(\mathbb{R})$. If all zeros of Wr(V) are real, then every nonzero $f \in V$ has at most k - 1 zeros in any interval of \mathbb{R} on which Wr(V) is nonzero.

Conjecture (Karp (2021))

Let $V \in Gr_{k,n}(\mathbb{R})$. (i) If all zeros of Wr(V) lie in $[-\infty, 0]$, then V is totally nonnegative. (ii) If all zeros of Wr(V) lie in $(-\infty, 0)$, then V is totally positive. (Above, Wr(V) has a zero at $-\infty$ if its degree is less than k(n - k).)

Theorem (Karp (2021))

The two conjectures above are equivalent.

One direction follows from Descartes's rule of signs. The other direction follows from a new description of the *totally positive complete flag variety*.
The latter conjecture also implies a totally positive secant conjecture.

Steven N. Karp (LaCIM)

Wronskians, total positivity, and real Schubert calculus

Complete flag variety

• Let $\mathsf{Fl}_n(\mathbb{R})$ be the *complete flag variety* of tuples (V_1, \ldots, V_{n-1}) , where

 $V_1 \subset \cdots \subset V_{n-1} \subset \mathbb{R}^n$ and dim $(V_k) = k$ for all $1 \le k \le n-1$.

• We say that (V_1, \ldots, V_{n-1}) is *totally nonnegative* if all its Plücker coordinates are nonnegative, i.e., $V_k \in Gr_{k,n}(\mathbb{R})$ is totally nonnegative for all $1 \le k \le n-1$. We similarly define *totally positive* complete flags.

Theorem (Karp (2021))

(i) The complete flag (V_1, \ldots, V_{n-1}) is totally nonnegative if and only if $Wr(V_k)$ is nonzero on the interval $(0, \infty)$, for all $1 \le k \le n-1$. (ii) The complete flag (V_1, \ldots, V_{n-1}) totally positive if and only if $Wr(V_k)$ is nonzero on the interval $[0, \infty]$, for all $1 \le k \le n-1$.

• In the language of Chebyshev systems, the conclusions above say that (V_1, \ldots, V_{n-1}) forms a *Markov system* (or *ECT-system*) on $(0, \infty)$ and $[0, \infty]$, respectively. Such systems also appear in the study of disconjugate linear differential equations.

Steven N. Karp (LaCIM)

Complete flag variety

• e.g. Let n := 3, and let $(V_1, V_2) \in \mathsf{Fl}_3(\mathbb{R})$ be represented by the matrix $\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$, with $\begin{array}{l} \Delta_1 = 1, \ \Delta_2 = a, \ \Delta_3 = b, \\ \Delta_{12} = 1, \ \Delta_{13} = c, \ \Delta_{23} = ac - b. \end{array}$

Hence (V_1, V_2) is totally positive if and only if a, b, c, ac - b > 0. Now, $Wr(V_1) = Wr(1 + ax + bx^2) = 1 + ax + bx^2$, $Wr(V_2) = Wr(1 + ax + bx^2, x + cx^2) = 1 + 2cx + (ac - b)x^2$. The Theorem says that a, b, c, ac - b > 0 if and only if $Wr(V_1)$ and $Wr(V_2)$ are positive on $[0, \infty]$. The forward direction is immediate, and we

 $Wr(V_2)$ are positive on $[0, \infty]$. The forward direction is immediate, and we can verify the reverse direction by a calculation.

• In general, the reverse direction follows from a topological argument, using the following lemma: if $(V_1, \ldots, V_{n-1}) \in \operatorname{Fl}_n(\mathbb{R})$ such that $\operatorname{Wr}(V_k)$ is nonzero at ∞ for all $1 \le k \le n-1$, then (V_1, \ldots, V_{n-1}) becomes totally positive upon replacing the variable x by x + t for all $t \gg 0$.