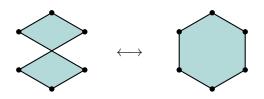
Gradient flows on totally nonnegative flag varieties

Slides available at snkarp.github.io

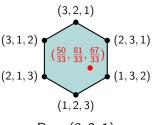


Steven N. Karp (University of Notre Dame) joint work with Anthony M. Bloch arXiv:2109.04558

> April 17th, 2023 Washington University

Schur-Horn theorem

• Let $\operatorname{Perm}(\lambda_1, \dots, \lambda_n)$ be the polytope in \mathbb{R}^n whose vertices are all permutations of $(\lambda_1, \dots, \lambda_n)$, where $\lambda_1 > \dots > \lambda_n$.



Perm(4, 3, 2, 1)

• Let
$$\mu$$
 send a matrix to its diagonal, e.g., $\mu\begin{pmatrix} \frac{1}{33} \begin{bmatrix} 50 & 28 & 0 \\ 28 & 81 & 8 \\ 0 & 8 & 67 \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \frac{50}{33}, \frac{81}{33}, \frac{67}{33} \end{pmatrix}$.

Theorem (Schur (1923), Horn (1953))

The map μ sends the space of $n \times n$ symmetric matrices with eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ onto $\text{Perm}(\lambda_1, \ldots, \lambda_n)$.

Toda lattice

• The Toda lattice (1967) is a Hamiltonian system with

• Flaschka (1974) expressed the Toda flow in Lax form: $\dot{L} = [L, \pi_{\text{skew}}(L)]$, where L is an $n \times n$ symmetric tridiagonal matrix with positive subdiagonal.

$$L = \begin{bmatrix} b_1 & a_1 & 0 \\ a_1 & b_2 & a_2 \\ 0 & a_2 & b_3 \end{bmatrix}, \quad \pi_{\mathsf{skew}}(L) = \begin{bmatrix} 0 & -a_1 & 0 \\ a_1 & 0 & -a_2 \\ 0 & a_2 & 0 \end{bmatrix}, \quad a_i = \frac{1}{2}e^{\frac{q_i - q_{i+1}}{2}}, \quad b_i = -\frac{1}{2}p_i.$$

- ullet The eigenvalues of L are distinct and invariant under the Toda flow. As $t \to \pm \infty$, L approaches a diagonal matrix with sorted diagonal entries.
- Let $\mathcal{J}_{\lambda}^{>0}$ (respectively, $\mathcal{J}_{\lambda}^{\geq 0}$) denote the manifold of all L with fixed spectrum $\lambda = (\lambda_1, \dots, \lambda_n)$ and all $a_i > 0$ (respectively, $a_i \geq 0$).

Isospectral manifold $\mathcal{J}_{\lambda}^{\geq 0}$

Theorem (Moser (1975))

The map which sends $L \in \mathcal{J}_{\lambda}^{>0}$ to the vector of first entries of its normalized eigenvectors is a homeomorphism onto $S_{>0}^{n-1}$.

• e.g.
$$L = \frac{1}{33} \begin{bmatrix} 50 & 28 & 0 \\ 28 & 81 & 8 \\ 0 & 8 & 67 \end{bmatrix} = \begin{bmatrix} \frac{10}{33} & \frac{7}{33} & \frac{28}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{10}{33} & \frac{28}{33} & \frac{7}{33} \\ \frac{7}{33} & \frac{4}{33} & -\frac{32}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33} \end{bmatrix}$$

$$\mapsto \left(\frac{16}{33}, \frac{7}{33}, \frac{28}{33} \right) \in S_{>0}^{2}.$$

Theorem (Tomei (1984))

The space $\mathcal{J}_{\lambda}^{\geq 0}$ is homeomorphic to $Perm(\lambda)$.

- However, $\mu: \mathcal{J}_{\lambda}^{\geq 0} \to \mathsf{Perm}(\lambda)$ is neither injective nor surjective.

Isospectral manifold of Jacobi matrices

Theorem (Bloch, Flaschka, Ratiu (1990))

Let Λ denote the diagonal matrix with diagonal λ . Then the map

$$L = g \Lambda g^{-1} \mapsto \mu(g^{-1} \Lambda g) \qquad (g \in O_n)$$

is a homeomorphism $\mathcal{J}_{\lambda}^{\geq 0} o \mathsf{Perm}(\lambda)$, and is a diffeomorphism on $\mathcal{J}_{\lambda}^{> 0}$.

• e.g.
$$L = \begin{bmatrix} \frac{13}{33} & \frac{1}{33} & \frac{23}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{13}{33} & \frac{23}{33} & \frac{3}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33} \end{bmatrix}$$

$$\mapsto \mu \left(\begin{bmatrix} \frac{16}{33} & \frac{28}{33} & \frac{7}{33} \\ \frac{7}{33} & \frac{4}{33} & -\frac{32}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{16}{33} & \frac{7}{33} & \frac{28}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33} \end{bmatrix} \right) = \left(\frac{795}{363}, \frac{401}{363}, \frac{982}{363} \right).$$

• A key to the proof is to define a map $L = g \Lambda g^{-1} \mapsto g^{-1} \Lambda g$ on $\mathcal{J}_{\lambda}^{\geq 0}$, by choosing $g \in O_n$ depending smoothly on L. We show that total positivity provides a natural way to choose g.

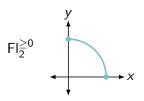
Totally nonnegative flag variety

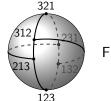
• The complete flag variety $\mathsf{FI}_n(\mathbb{C})$ consists of all tuples of subspaces $V=(V_1,\ldots,V_{n-1})$ of \mathbb{C}^n , where

$$0 \subset V_1 \subset \cdots \subset V_{n-1} \subset \mathbb{C}^n$$
 and $\dim(V_k) = k$ for all k .

• We say that $g \in GL_n(\mathbb{C})$ represents $V \in FI_n(\mathbb{C})$ if each V_k is the span of the first k columns of g. We call V totally positive if it is represented by some g whose left-justified (i.e. initial) minors are all real and positive. We denote the set of such V by $FI_n^{>0}$. We similarly define $FI_n^{\geq 0}$.

• e.g.
$$\begin{bmatrix} \frac{16}{33} & \frac{7}{33} & \frac{28}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{7}{4} & 1 & 0 \\ \frac{7}{16} & \frac{17}{4} & 1 \end{bmatrix} \in \mathsf{Fl}_3^{>0}.$$





 $\mathsf{Fl}_3^{\geq 0}$

Topology of totally nonnegative flag varieties

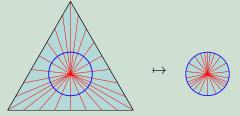
Theorem (Galashin, Karp, Lam (2019))

The space $\operatorname{Fl}_n^{\geq 0}$ is homeomorphic to a closed ball.

Proof

Let M be the $n \times n$ tridiagonal matrix $\begin{bmatrix} 0 & 1 & 0 & \cdots \\ 1 & 0 & 1 & \cdots \\ 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$. Then $V \mapsto \exp(tM)V$

for $t \in [0, \infty]$ contracts $\mathsf{Fl}_n^{\geq 0}$ onto a unique attractor in the interior.



Totally nonnegative adjoint orbit

• Let U_n be the group of $n \times n$ unitary matrices and \mathfrak{u}_n its Lie algebra of $n \times n$ skew-Hermitian matrices. For $\lambda_1 > \cdots > \lambda_n$, consider the adjoint orbit

$$\mathcal{O}_{\pmb{\lambda}}:=\{g(\mathrm{i}\Lambda)g^{-1}:g\in \mathsf{U}_n\}\subseteq \mathfrak{u}_n,\quad \text{ where }\Lambda:=\mathsf{Diag}(\lambda_1,\ldots,\lambda_n).$$

We have the isomorphism

$$\mathcal{O}_{\boldsymbol{\lambda}} o \mathsf{Fl}_n(\mathbb{C}), \quad g(\mathrm{i}\Lambda)g^{-1} \mapsto g,$$

sending a matrix to its flag of eigenvectors ordered by descending eigenvalue.

• We define $\mathcal{O}_{\lambda}^{>0}$ and $\mathcal{O}_{\lambda}^{\geq 0}$ to be the preimages of $\mathsf{Fl}_n^{>0}$ and $\mathsf{Fl}_n^{\geq 0}$.

$$\bullet \text{ e.g. } \begin{bmatrix} \frac{16}{33} & \frac{7}{33} & \frac{28}{33} \\ \frac{28}{33} & \frac{4}{33} & -\frac{17}{33} \\ \frac{7}{33} & -\frac{32}{33} & \frac{4}{33} \end{bmatrix} \begin{bmatrix} 3i & 0 & 0 \\ 0 & 2i & 0 \\ 0 & 0 & i \end{bmatrix} \begin{bmatrix} \frac{16}{33} & \frac{28}{33} & \frac{7}{33} \\ \frac{7}{33} & \frac{4}{33} & -\frac{32}{33} \\ \frac{28}{33} & -\frac{17}{33} & \frac{4}{33} \end{bmatrix} = \frac{i}{33} \begin{bmatrix} 50 & 28 & 0 \\ 28 & 81 & 8 \\ 0 & 8 & 67 \end{bmatrix} \in \mathcal{O}_{(3,2,1)}^{>0}.$$

Proposition (Bloch, Karp (2023))

The tridiagonal subset of $\mathcal{O}_{\lambda}^{\geq 0}$ is precisely $i\mathcal{J}_{\lambda}^{\geq 0}$ (i.e. where all off-diagonal entries lie on the nonnegative imaginary axis).

Gradient flows on adjoint orbits

- We consider the gradient flow on \mathcal{O}_{λ} of the function $L \mapsto 2n \operatorname{tr}(LN)$, where $N \in \mathfrak{u}_n$. We work in the Kähler, normal, and induced metrics.
- We say that the flow on \mathcal{O}_{λ} strictly preserves positivity if trajectories starting in $\mathcal{O}_{\lambda}^{\geq 0}$ lie in $\mathcal{O}_{\lambda}^{>0}$ for all positive time. If so, we obtain a contractive flow with the Lyapunov function $L\mapsto -2n\operatorname{tr}(LN)$.

Proposition (Duistermaat, Kolk, Varadarajan (1983); Guest, Ohnita (1993))

The isomorphism $\mathcal{O}_{\lambda} \cong \mathsf{Fl}_n(\mathbb{C})$ sends the gradient flow with respect to N in the Kähler metric to the flow $V(t) = \exp(t\mathrm{i} N)V$ on $\mathsf{Fl}_n(\mathbb{C})$.

Theorem (Bloch, Karp (2023))

The gradient flow on \mathcal{O}_{λ} with respect to N in the Kähler metric strictly preserves positivity if and only if $i N \in \mathcal{J}_{\mu}^{>0}$ for some μ .

• The contractive flow on $\operatorname{Fl}_n^{\geq 0}$ considered earlier is such a flow. We also obtain contractive flows on a new family of *amplituhedra*.

Gradient flows: normal and induced metrics

Proposition (Brockett (1991); Bloch, Brockett, Ratiu (1992))

The gradient flow on \mathcal{O}_{λ} with respect to N in the normal metric is $\dot{L} = [L, [L, N]].$

Theorem (Bloch, Karp (2023))

No gradient flow on \mathcal{O}_{λ} in the normal metric strictly preserves positivity.

Proposition (Bloch, Karp (2023))

The gradient flow on \mathcal{O}_{λ} with respect to N in the induced metric is $\dot{L} = [L, \operatorname{ad}_{L}^{-1}(N)].$

Proposition (Bloch, Karp (2023))

Let $\lambda_1 > \lambda_2 > \lambda_3$ satisfy $\frac{\lambda_1 - \lambda_2}{\lambda_2 - \lambda_3} \notin [\frac{1}{2 + 2\sqrt{2}}, 2 + 2\sqrt{2}]$. Then no gradient flow on $\mathcal{O}_{\boldsymbol{\lambda}}$ in the induced metric strictly preserves positivity.

Twist map

• Every element of $\mathsf{Fl}_n^{\geq 0}$ is represented by a unique $g \in \mathsf{U}_n$ whose left-justified minors are all nonnegative. Let $\vartheta(g) := ((-1)^{i+j}(g^{-1})_{i,j})_{1 \leq i,j \leq n}$.

• e.g.
$$\vartheta \left(\frac{1}{33} \begin{bmatrix} 16 & -7 & 28 \\ 28 & -4 & -17 \\ 7 & 32 & 4 \end{bmatrix} \right) = \frac{1}{33} \begin{bmatrix} 16 & -28 & 7 \\ 7 & -4 & -32 \\ 28 & 17 & 4 \end{bmatrix} \stackrel{\mathsf{Fl}_n}{=} \begin{bmatrix} 16 & 16 \cdot 3 & 16 \cdot 3^2 \\ 7 & 7 \cdot 2 & 7 \cdot 2^2 \\ 28 & 28 \cdot 1 & 28 \cdot 1^2 \end{bmatrix}.$$

Theorem (Bloch, Karp (2023))

The involution ϑ defines a diffeomorphism $\mathsf{Fl}_n^{\geq 0} \to \mathsf{Fl}_n^{\geq 0}$.

• The map ϑ induces a map on $\mathcal{O}_{\lambda}^{\geq 0}$. Restricting to $i\mathcal{J}_{\lambda}^{\geq 0}$, we recover the map of Bloch, Flaschka, and Ratiu on $\mathcal{J}_{\lambda}^{\geq 0}$:

$$L = g \Lambda g^{-1} \mapsto g^{-1} \Lambda g$$
, where $\Lambda := \text{Diag}(\lambda_1, \dots, \lambda_n)$.

Proposition (Bloch, Karp (2023))

For $x \in \mathbb{R}^n_{>0}$, let $\mathsf{Vand}(\lambda, x) \in \mathsf{FI}_n(\mathbb{C})$ be the complete flag generated by $x, \Lambda x, \dots, \Lambda^{n-1} x$. Then the image of $i\mathcal{J}^{>0}_{\lambda} \subseteq \mathcal{O}^{>0}_{\lambda} \cong \mathsf{FI}^{>0}_n$ is $\vartheta(\{\mathsf{Vand}(\lambda, x) : x \in \mathbb{R}^n_{>0}\}) \subseteq \mathsf{FI}^{>0}_n$.

Context for the twist map ϑ

1 The twist map ϑ is motivated by the twist map on $GL_n(\mathbb{C})$ of Berenstein, Fomin, and Zelevinsky, but based on the Iwasawa (or QR-) decomposition of $GL_n(\mathbb{C})$, rather than the Bruhat decomposition.

• e.g.
$$\begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ c & 1 & 0 \\ b & a & 1 \end{bmatrix}$$
 (BFZ-style twist on Fl₃(\mathbb{C}))

② We have $\operatorname{Fl}_n(\mathbb{C}) = K/T$, where $K := \operatorname{U}_n(\mathbb{C})$ and $T \subseteq \operatorname{U}_n(\mathbb{C})$ is the subset of diagonal matrices. We have the isomorphism

$$K/T \xrightarrow{\cong} T \backslash K$$
, $gT \mapsto (gT)^{-1} = Tg^{-1}$.

What if we want an isomorphism of the form

$$K/T \xrightarrow{\cong} T \backslash K, \quad gT \mapsto Tg?$$

(This arose in work of Ayzenberg and Buchstaber on Hessenberg varieties.) This depends on the choice of $g \in K$ for the given T-coset, and ϑ gives a smooth choice of g on $\operatorname{Fl}_n^{\geq 0}$ (unlike BFZ-style twists).

Toda flow and total positivity

Recall the Toda flow on symmetric tridiagonal matrices:

$$\dot{L} = [L, \pi_{\sf skew}(L)], \quad L \in \mathcal{J}_{\lambda}^{>0}.$$

Repacling L by $-iL \in \mathcal{O}_{\lambda}$, we obtain the *full symmetric Toda flow* on \mathcal{O}_{λ} : $\dot{L} = [L, \pi_{\mathbb{P}_{\lambda}}(-iL)], \quad L \in \mathcal{O}_{\lambda}.$

Bloch (1990): The tridiagonal Toda flow on
$$\mathcal{O}_{\lambda}$$
 is the gradient

• Bloch (1990): The tridiagonal Toda flow on \mathcal{O}_{λ} is the gradient flow with respect to $N=-\mathrm{i}\,\mathrm{Diag}(n-1,\ldots,1,0)$ in the normal metric.

Theorem (Bloch, Karp (2023))

The full symmetric Toda flow on \mathcal{O}_{λ} weakly preserves positivity, and is the twisted gradient flow with respect to $N=-\mathrm{i}\Lambda$ in the Kähler metric.

- Gekhtman and Shapiro (1997) and Kodama and Williams (2015) proved related results for the *full Kostant–Toda flow* on Hessenberg matrices.
- e.g. n = 3: $\dot{L} = [L, L_{-}]$, where $L = \begin{bmatrix} a_{1,1} & 1 & 0 \\ a_{2,1} & a_{2,2} & 1 \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix}$, $L_{-} = \begin{bmatrix} 0 & 0 & 0 \\ a_{2,1} & 0 & 0 \\ a_{3,1} & a_{3,2} & 0 \end{bmatrix}$.

Future directions

- Study flows on the cell closures of the cell decomposition of $Fl_n^{\geq 0}$.
- Study the subset of $\mathcal{O}_{\lambda}^{\geq 0}$ with bounded bandwidth (the tridiagonal subset being $i\mathcal{J}_{\lambda}^{\geq 0}$).
- Extend the setup beyond type A.
- Generalize the connection to Toda flows to the periodic and continuous cases.
- Study Toda flows on permutohedra.

Thank you!