g-Whittaker functions, finite fields, and Jordan forms

Slides available at lacim-membre.uqam.ca/~karp

Steven N. Karp (LaCIM, Université du Québec à Montréal) joint work with Hugh Thomas

> May 20th, 2021 University of Waterloo

Schur functions

ullet A partition λ is a weakly-decreasing sequence of nonnegative integers.

• e.g.
$$\lambda = (4,4,1) =$$

$$T = \begin{bmatrix} 1 & 3 & 3 & 4 \\ 4 & 4 & 8 & 8 \\ 5 \end{bmatrix}$$

ullet A semistandard tableau T is a filling of λ with positive integers which is weakly increasing across rows and strictly increasing down columns.

Definition (Schur function)

$$s_{\lambda}(x_1,x_2,\dots) := \sum_{T} \mathbf{x}^{T},$$

where the sum is over all semistandard tableaux T of shape λ .

• $s_{\lambda}(\mathbf{x})$ is symmetric in the variables x_i .

Schur functions

• e.g. $s_{(2,1)}(x_1, x_2, x_3) =$

- Schur functions appear in many contexts; for example, they:
 - form an *orthonormal basis* for the algebra of symmetric functions in **x**;
 - are characters of the *irreducible polynomial representations* of $GL_n(\mathbb{C})$;
 - give the values of the *irreducible characters* of the symmetric group S_n , when expanded in terms of power sum symmetric functions;
 - are representatives for *Schubert classes* in the cohomology ring of the Grassmannian $Gr_{k,n}(\mathbb{C})$;
 - define the Schur processes of Okounkov and Reshetikhin (2003).

Cauchy identity

Theorem (Cauchy)

$$\prod_{i,j\geq 1} \frac{1}{1-x_iy_j} = \sum_{\lambda} s_{\lambda}(\mathbf{x})s_{\lambda}(\mathbf{y})$$

- We can expand the left-hand side as a sum indexed by *nonnegative-integer matrices*, and the right-hand side as a sum indexed by pairs of *semistandard tableaux of the same shape*.
- e.g. Taking the coefficient of $x_1x_2y_1y_2$ on each side gives

Burge correspondence (1974)

• The Burge correspondence (also known as column Robinson–Schensted–Knuth) is a bijection

$$M \mapsto (P(M), Q(M))$$

between nonnegative-integer matrices and pairs of semistandard tableaux of the same shape. It proves the Cauchy identity for Schur functions.

- P(M) is obtained via *column insertion* and Q(M) is obtained via *recording*.
- e.g. w = 25143

2	2	1 2	1 2	1 2 5	1 3 5
	5	5	4 5	3 4	2 4
				P(w)	Q(w)

Nilpotent matrices

• An $n \times n$ matrix N over k is *nilpotent* if some power of N is zero. Such an N can be conjugated over k into *Jordan form*. Let $JF^{T}(N)$ be the *transpose* of the partition given by the sizes of the Jordan blocks.

• Algebraically, $\mathsf{JF}^{\top}(N)$ is the partition λ given by

$$\lambda_1 + \lambda_2 + \cdots + \lambda_i = \dim(\ker(N^i))$$
 for all i .

Theorem (Gansner (1981))

Let N be a generic $n \times n$ strictly upper-triangular matrix, where $N_{i,j} = 0$ for all inversions (i,j) of w^{-1} . Then P(w) and Q(w) can be read off from the Jordan forms of the leading submatrices of N and w^{-1} Nw.

Burge correspondence via Jordan forms

Flag variety

• A complete flag F in \mathbb{k}^n is a sequence of nested subspaces

$$0 = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_{n-1} \subseteq F_n = \Bbbk^n, \qquad \dim(F_i) = i \text{ for all } i.$$

• An $n \times n$ (nilpotent) matrix N is strictly compatible with F if

$$N(F_i) \subseteq F_{i-1}$$
 for all i .

ullet The N in Gansner's theorem is precisely a matrix strictly compatible with two complete flags F and F' defined by

$$F_i := \langle \mathsf{e}_1, \mathsf{e}_2, \dots, \mathsf{e}_i \rangle \quad \text{ and } \quad F_j' := \langle \mathsf{e}_{w(1)}, \mathsf{e}_{w(2)}, \dots, \mathsf{e}_{w(j)} \rangle.$$

The two sequences of matrices in the theorem are $(N|_{F_i})_{i=1}^n$ and $(N|_{F_j'})_{j=1}^n$.

• More generally, we can take any pair of flags (F, F') with *relative* position w, denoted $F \xrightarrow{w} F'$. The relative position records $\dim(F_i \cap F'_j)$ for all i and j, or alternatively, the *Schubert cell* of F' relative to F.

Burge correspondence via flags

Theorem (Steinberg (1976, 1988), Spaltenstein (1982), Rosso (2012))

Fix partial flags F and F' with $F \xrightarrow{M} F'$. Let N be a generic nilpotent matrix strictly compatible with both F and F'. Then

$$P(M) = JF^{T}(N; F)$$
 and $Q(M) = JF^{T}(N; F')$.

• If $F \xrightarrow{w} F'$, then $F' \xrightarrow{w^{-1}} F$. This implies the symmetry

$$\mathsf{P}(w^{-1}) = \mathsf{Q}(w).$$

• What happens when k is a *finite* field, and we consider *all* choices of N (not necessarily generic)?

q-Whittaker functions

ullet Define $[n]_q:=1+q+q^2+\cdots+q^{n-1}$ and $[n]_q!:=[n]_q[n-1]_q\cdots[1]_q.$

Definition (q-Whittaker function)

$$W_{\lambda}(x_1,x_2,\ldots;q) := \sum_{T} \operatorname{wt}_q(T)\mathbf{x}^T,$$

where the sum is over all semistandard tableaux T of shape λ .

• $W_{\lambda}(\mathbf{x};q)$ is symmetric in the variables x_i , and specializes to $s_{\lambda}(\mathbf{x})$ when q=0. We obtain the \mathfrak{gl}_n -Whittaker functions as a certain $q\to 1$ limit.

• e.g.
$$T = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 5 & 7 \end{bmatrix}$$
 wt_q $(T) = [1]_q[2]_q[1]_q[2]_q[1]_q[2]_q = (1+q)^4$

• We have the following specializations:

$$W_{\lambda}(\mathbf{x};q) = P_{\lambda}(\mathbf{x};q,0) = q^{\deg(\widetilde{H}_{\lambda})} \omega(\widetilde{H}_{\lambda}(\mathbf{x};1/q,0)), \quad W_{\lambda}(\mathbf{x};1) = e_{\lambda^{\top}}(\mathbf{x}).$$

q-Cauchy identity

Theorem (Macdonald (1995))

$$\prod_{i,j\geq 1} \prod_{d\geq 0} \frac{1}{1-x_i y_j q^d} = \sum_{\lambda} \frac{(1-q)^{-\lambda_1}}{\prod\limits_{i\geq 1} [\lambda_i - \lambda_{i+1}]_q!} W_{\lambda}(\mathbf{x};q) W_{\lambda}(\mathbf{y};q)$$

- This gives the *partition function* for the *q-Whittaker processes*, a special case of the *Macdonald processes* of Borodin and Corwin (2014).
- e.g. Taking the coefficient of $x_1x_2y_1y_2$ on each side gives

$$(1-q)^{-2} + (1-q)^{-2} = (1-q)^{-1} + (1-q)^{-2}(1+q)$$

$$12 \qquad 21 \qquad \left(\frac{1}{2}, \frac{1}{2}\right) \qquad \left(\frac{1}{2}, \frac{1}{2}\right)$$

$$1-q \qquad 1$$

q-Burge correspondence

• e.g.
$$w = 12$$

$$ullet$$
 e.g. $w=12$ $N=egin{bmatrix} 0 & a \ 0 & 0 \end{bmatrix}$ $(a\in \mathbb{F}_{1/q})$

$$(a \in \mathbb{F}_{1/q})$$

$$Q(w): \quad {\scriptstyle 1} \quad {\scriptstyle \begin{bmatrix} 1 \\ 0 \end{bmatrix}} \quad {\scriptstyle \frac{1}{2}} \quad {\scriptstyle \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}}$$

$$a \neq 0$$
: $\frac{1}{2}$

$$\boxed{rac{1}{2}}$$
 $\mathbb{P} = 1 - q$

$$a=0$$
:

$$1 \mid 2$$
 $\mathbb{P} = q$

• e.g.
$$w = 2\hat{1}$$
 $N = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

$$v = 21$$
 $N = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

$$P(w): \quad {\scriptstyle 1} \quad {\scriptstyle \begin{bmatrix} 1 \\ 0 \end{bmatrix}} \quad {\scriptstyle 1} \quad {\scriptstyle \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}}$$

$$P(w)$$
: $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ $Q(w)$: $\begin{bmatrix} 2 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$

$$\mathbb{P}=1$$

q-Burge correspondence

• Let 1/q be a prime power, and fix partial flags $F \xrightarrow{M} F'$ over $\mathbb{F}_{1/q}$. Let N denote a uniformly random nilpotent matrix strictly compatible with both F and F'. For semistandard tableaux T and T' of the same shape, define

$$p_M(T, T') := \mathbb{P}[\mathsf{JF}^\top(N; F) = T \text{ and } \mathsf{JF}^\top(N; F') = T'].$$

(This definition depends only on M, not on the choice of (F, F').)

Theorem (Karp, Thomas (2021+))

- (i) The maps $p_M(\cdot, \cdot)$ define a probabilistic bijection proving the Cauchy identity for q-Whittaker functions, called the q-Burge correspondence.
- (ii) As $q \rightarrow 0$, the q-Burge correspondence converges to the deterministic Burge correspondence.
- It is an open problem to determine if $p_M(T, T')$ is a polynomial in q.
- A different probabilistic bijection was given by Matveev and Petrov (2017), using the *q-row insertion* of Borodin and Petrov (2016).

Proof outline

Theorem (Karp, Thomas (2021+))

Fix a nilpotent matrix N over $\mathbb{F}_{1/q}$ with Jordan type λ . The coefficient of $x_1^{\alpha_1} \cdots x_k^{\alpha_k}$ in $W_{\lambda}(\mathbf{x};q)$ equals $q^{\sum_i \binom{\lambda_i}{2} - \binom{\alpha_i}{2}}$ times the number of partial flags F over $\mathbb{F}_{1/q}$ strictly compatible with N satisfying

$$\dim(F_i) = \alpha_1 + \cdots + \alpha_i$$
 for all i .

- e.g. $\lambda = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Then the coefficient of x_1x_2 in $W_{\lambda}(\mathbf{x};q)$ is
 - $q^1 \cdot \#(ext{complete flags in } \mathbb{F}^2_{1/q}) = q(1+1/q) = q+1.$
- This is similar to a formula for the modified Hall–Littlewood functions $\widetilde{H}_{\lambda}(\mathbf{x};q,0)$ in terms of weakly compatible flags over \mathbb{F}_q .
- \bullet To prove that the q-Burge correspondence works, we double count

$$\{(F, F', N) : F \xrightarrow{M} F', \mathsf{JF}^{\top}(N; F) = T, \mathsf{JF}^{\top}(N; F') = T'\}.$$

Quiver representations and the preprojective algebra

• Consider a path quiver with a unique sink:

$$Q = \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$$

ullet A representation V of Q is an assignment of a vector space to each vertex and a linear map to each arrow, e.g.,

- ullet We will only consider V where every linear map is injective. Isomorphism classes of such V are indexed by nonnegative-integer matrices M.
- ullet We now decorate V with a linear map for the reverse of each arrow, such that a relation holds for every vertex:

$$\alpha \circ \gamma \pm \delta \circ \beta = 0$$

This defines a module V^{\sharp} over the *preprojective algebra* of Q.

Socle filtration

• Up to isomorphism, V^{\sharp} is given (non-uniquely) by a triple (F, F', N):

ullet The *socle filtration* of V^{\sharp} corresponds precisely to the pair of tableaux

$$(T, T') = (\mathsf{JF}^{\top}(N; F), \mathsf{JF}^{\top}(N; F')).$$

Counting isomorphism classes

• The *q*-Burge correspondence gives enumerative results such as:

Theorem (Karp, Thomas (2021+))

Let (T, T') be a pair of semistandard tableaux of shape λ , and let \mathbf{d} be a dimension vector of Q. Then

$$\sum_{\boldsymbol{\mathcal{V}}^{\sharp}} \frac{1}{|\mathsf{Aut}(\boldsymbol{\mathcal{V}}^{\sharp})|} = \frac{q^{c(\mathbf{d})}(1-q)^{-\lambda_{1}}}{\prod\limits_{i\geq 1}[\lambda_{i}-\lambda_{i+1}]_{q}!} \operatorname{wt}_{q}(\boldsymbol{\mathcal{T}}) \operatorname{wt}_{q}(\boldsymbol{\mathcal{T}}'),$$

where the sum is over all V^{\sharp} over $\mathbb{F}_{1/q}$ up to isomorphism, with dimension vector \mathbf{d} and socle filtration corresponding to (T,T').

• The description of $W_{\lambda}(\mathbf{x};q)$ in terms of partial flags can be rephrased as enumerative statements for certain *Nakajima quiver varieties* over $\mathbb{F}_{1/q}$.

Thank you!